简介

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

对应问题:在无向图G=(V,E)中,假设每条边E(i)的长度W(i),求由顶点V0到各节点的最短路径。

工作过程

Dijkstra算法将顶点集合分为两组,一组记录已经求得最短路径的顶点记为finallyNodes,一组正在求解中的顶点记为processNodes,

step1:finallyNodes中顶点最开始只有源节点,最短路径长度为0,而processNodes中包含除源节点以外的节点,并初始化路径长度,与源节点直接相连的记路径长度为权重,不相连的记为♾️。

step2:从process中选择路径长度最小的顶点,加入finallyNodes,并且更新processNodes,将与当前顶点相连的顶点路径长度更新为min(当前权重,当前顶点最短路径长度+当前顶点与顶点相连边权重)。

step3:重复step2,直至processNodes数组为空。

总体思路

这次我想先描述一下自己的大概思路,下面再写具体实现。

首先为了方便,我采用的是邻接表存储图结构,邻接表是一个二维数组,值存储权重。根据上面工作过程中描述的内容,我们会有两个中间集合记录,finallyNodes记录的是最终结果,我们只需要将计算的结果往里面塞即可。但是processNodes却是一个不断变化更新的集合,其中的操作包括删除节点,更改节点值,查找节点值,同时我们每次需要拿出processNodes中记录的距离最小的值,所以ProcessNodes准备用最小堆来做,那再删除节点,更改节点值之后都需要调整堆为最小堆,java自带的优先队列没有提供更改节点值的操作,因此我们这里需要自己实现一个小根堆,支持以上操作。

然后就中规中矩实现dijkstra算法即可。

实现

小根堆

如果对堆不太熟悉的可以先看看这篇文章:堆(优先队列),这里就不过多解释了,直接贴代码。

这里堆中存的数据格式为int二维数组,存储节点下标位置和对应距离,排序按存储的距离进行排序。

public class MinHeap {
List<int[][]> heap ;
/**
* 获取并移除堆顶元素,并调整堆
* @return
*/
public int[][] pop() {
int[][] top = heap.get(0);
heap.set(0, heap.get(heap.size() - 1));
heap.remove(heap.size() - 1);
//调整堆
this.adjust(0, heap.size() - 1);
return top;
} /**
* 判断是否为空
* @return true/false
*/
public boolean isEmpty() {
if (null == this.heap) {
return true;
}
if (this.heap.size() == 0) {
return true;
}
return false;
}
/**
* 修改index位置节点的value值,并调整最小堆(Java priorityQueue未提供)
* @param index 修改节点位置
* @param value 修改值
*/
public void changeValue(int index, int value) {
int src = heap.get(index)[0][1];
heap.get(index)[0][1] = value;
//直接比较当前值是变大还是变小,然后考虑是向上调整还是向下调整
//则当前值可能往上移动
if (src > value) {
this.upAdjust(index);
return;
}
this.adjust(index, heap.size() - 1);
} public void upAdjust(int index) {
//依次与双亲节点进行比较,小于双亲节点就直接交换。一直到根节点
while (index > 0) {
int parent = index >> 1;
//双亲节点本来小于当前节点不需要进行调整
if (heap.get(parent)[0][1] <= heap.get(index)[0][1]) {
break;
}
swap(index, parent);
index = parent;
}
} /**
* 初始化一个最小堆
* @param nums
*/
public void init(int[][] nums) {
heap = new ArrayList<>(nums.length);
for (int i = 0 ; i < nums.length; i ++) {
int[][] temp = new int[1][2];
temp[0][0] = nums[i][0];
temp[0][1] = nums[i][1];
heap.add(temp);
}
//从最后一个双亲节点开始将堆进行调整
for (int i = nums.length / 2 ; i >= 0 ; -- i) {
this.adjust(i, nums.length - 1);
}
}
/**
* 从当前index开始调节为最小堆
* @param index 当前节点下标
* @param end 最后一个节点下标
*/
private void adjust(int index, int end) {
//找到当前节点的孩子节点,将较小的节点与当前节点交换,一直往下,直至end
while (index <= end) {
//左孩子节点
int left = index << 1;
if (left + 1 <= end && heap.get(left + 1)[0][1] < heap.get(left)[0][1] ) {
//找到当前较小的节点
++ left;
}
//没有孩子节点,或者当前的孩子节点均已大于当前节点,已符合最小堆,不需要进行调整
if (left > end || heap.get(index)[0][1] <= heap.get(left)[0][1]) {
break;
}
swap(index, left);
index = left;
}
}
private void swap(int i, int j) {
int[][] temp = heap.get(i);
heap.set(i, heap.get(j));
heap.set(j, temp);
}
}

Dijsktra

数据结构

图节点仅存储节点值,一个Node数组nodes,存储图中所有节点,一个二维数组adjacencyMatrix,存储图中节点之间边的权重,行和列下标与nodes数组下标对应。

 //节点
Node[] nodes; //邻接矩阵
int[][] adjacencyMatrix;
public class Node {
private char value;
Node(char value) {
this.value = value;
}
}

初始化

初始化图

values标志的图中所有节点值,edges标志图中边,数据格式为(node1的下标,node2的下标,边权重)

private void initGraph(char[] values, String[] edges) {
nodes = new Node[values.length];
//初始化node节点
for (int i = 0 ; i < values.length ; i ++) {
nodes[i] = new Node(values[i]);
}
adjacencyMatrix = new int[values.length][values.length];
//初始化邻接表,同一个节点权重记为0,不相邻节点权重记为Integer.MAX_VALUE
for (int i = 0 ; i < values.length ; i++) {
for (int j = 0 ; j < values.length ; j ++) {
if (i == j) {
adjacencyMatrix[i][j] = 0;
continue;
}
adjacencyMatrix[i][j] = Integer.MAX_VALUE;
adjacencyMatrix[j][i] = Integer.MAX_VALUE;
}
}
//根据edges更新相邻节点权重值
for (String edge : edges) {
String[] node = edge.split(",");
int i = Integer.valueOf(node[0]);
int j = Integer.valueOf(node[1]);
int weight = Integer.valueOf(node[2]);
adjacencyMatrix[i][j] = weight;
adjacencyMatrix[j][i] = weight;
}
visited = new boolean[nodes.length]; }

初始化dijsktra算法必要的finallyNodes和processNodes


/**
* 标志对应下标节点是否已经处理,避免二次处理
*/
boolean[] visited;
/**
* 记录已经求得的最短路径 finallyNodes[0][0]记录node下标,finallyNodes[0][1]记录最短路径长度
*/
List<int[][]> finallyNodes;
/**
* 记录求解过程目前的路径长度,因为每次取当前已知最短,所以最小堆进行记录
* 但是java优先队列没有实现改变值,这里需要自己实现
* 首先每次取出堆顶元素之后,堆顶元素加入finallyNodes,此时需要更新与当前元素相邻节点的路径长度
* 然后重新调整小根堆
* 首先:只会更新变小的数据,所以从变小元素开始往上进行调整,或者直接调用调整方法,从堆顶往下进行调整
*/
MinHeap processNodes;
/**
* 初始化,主要初始化finallyNodes和processNodes,finallyNodes加入源节点,processNodes加入其他节点
* @param nodeIndex
*/
private void initDijkstra(int nodeIndex) {
finallyNodes = new ArrayList<>(nodes.length);
processNodes = new MinHeap();
int[][] node = new int[1][2];
node[0][0] = nodeIndex;
node[0][1] = adjacencyMatrix[nodeIndex][nodeIndex];
finallyNodes.add(node);
visited[nodeIndex] = true;
int[][] process = new int[nodes.length - 1][2];
int j = 0;
for (int i = 0 ; i < nodes.length ; i++) {
if (i == nodeIndex) {
continue;
}
process[j][0] = i;
process[j][1] = adjacencyMatrix[nodeIndex][i];
++ j;
}
//初始化最小堆
processNodes.init(process);
}

dijsktra算法实现

public void dijkstra() {
//1。堆顶取出最小元素,加入finallyNodes
//2。将与堆顶元素相连节点距离更新,
while (!processNodes.isEmpty()) {
int[][] head = processNodes.pop();
finallyNodes.add(head);
int nodeIndex = head[0][0];
visited[nodeIndex] = true;
//跟堆顶元素相邻的元素
for (int j = 0 ; j < nodes.length ; j ++) {
//找到相邻节点
if (visited[j] || Integer.MAX_VALUE == adjacencyMatrix[nodeIndex][j]) {
continue;
}
for (int i = 0 ; i < processNodes.heap.size() ; i++) {
int[][] node = processNodes.heap.get(i);
//找到节点并且值变小,需要调整
if (node[0][0] == j && node[0][1] > head[0][1] + adjacencyMatrix[nodeIndex][j]) {
processNodes.changeValue(i, head[0][1] + adjacencyMatrix[nodeIndex][j]);
break;
}
}
} }
}

测试

public static void main(String[] args) {
char[] values = new char[]{'A','B','C','D','E','F','G','H'};
String[] edges = new String[]{"0,1,2","0,2,3","0,3,4","1,4,6","2,4,3","3,4,1","4,5,1","4,6,4","5,7,2","6,7,2"};
Dijkstra dijkstra = new Dijkstra();
dijkstra.initGraph(values, edges);
int startNodeIndex = 0;
dijkstra.initDijkstra(startNodeIndex);
dijkstra.dijkstra();
for (int[][] node : dijkstra.finallyNodes) {
System.out.println(dijkstra.nodes[node[0][0]].value + "距离" + dijkstra.nodes[startNodeIndex].value + "最短路径为:" + node[0][1]);
}
}

图解Dijkstra算法+代码实现的更多相关文章

  1. 带你找到五一最省的旅游路线【dijkstra算法代码实现】

    算法推导过程参见[dijkstra算法推导详解] 此文为[dijkstra算法代码实现] https://www.cnblogs.com/Halburt/p/10767389.html package ...

  2. 最短路径——dijkstra算法代码(c语言)

    最短路径问题 看了王道的视频,感觉云里雾里的,所以写这个博客来加深理解.(希望能在12点以前写完) 一.总体思想 dijkstra算法的主要思想就是基于贪心,找出从v开始的顶点到各个点的最短路径,做法 ...

  3. 图解Dijkstra(迪杰斯特拉)算法+代码实现

    简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的 ...

  4. python代码实现dijkstra算法

    求解从1到6的最短路径. python代码实现:(以A-F代表1-6) # Dijkstra算法需要三张散列表和一个存储列表用于记录处理过的节点,如下: processed = [] def buil ...

  5. Dijkstra算法(二)之 C++详解

    本章是迪杰斯特拉算法的C++实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnbl ...

  6. Dijkstra算法(一)之 C语言详解

    本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...

  7. 最短路径算法之Dijkstra算法(java实现)

    前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知 ...

  8. Dijkstra算法之 Java详解

    转载:http://www.cnblogs.com/skywang12345/ 迪杰斯特拉算法介绍 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主 ...

  9. 迪杰斯特拉Dijkstra算法介绍

    迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijk ...

随机推荐

  1. 前馈控制+PID

    参考来源: 北京交通大学 硕士学位论文 基于脉冲串控制的含位置反馈和前馈补偿的位置控制算法的研究  赵旺升

  2. 使用Visual Studio查看C++类内存分布

    书上类继承相关章节到这里就结束了,这里不妨说下C++内存分布结构,我们来看看编译器是怎么处理类成员内存分布的,特别是在继承.虚函数存在的情况下. 工欲善其事,必先利其器,我们先用好Visual Stu ...

  3. android SQLite数据库(转)

    Android数据库 之 SQLite数据库   Android数据库  一.关系型数据库SQLIte 每个应用程序都要使用数据,Android应用程序也不例外,Android使用开源的.与操作系统无 ...

  4. Redis 中的过期删除策略和内存淘汰机制

    Redis 中 key 的过期删除策略 前言 Redis 中 key 的过期删除策略 1.定时删除 2.惰性删除 3.定期删除 Redis 中过期删除策略 从库是否会脏读主库创建的过期键 内存淘汰机制 ...

  5. CentOS的安装以及IP地址(动态/静态)的配置

    啊!复试压力好大,跟好多学长聊完以后觉得自己更该好好努力了,一边好好准备复试科目,一边把之前忘掉的捡起来吧,加油! 1.安装的具体过程请参照这位博主写的,我觉得写的很详细,https://blog.c ...

  6. android的布局xml文件如何添加注释?

    xml布局文件如图添加注释后报错,错误内容如下: 上网查阅xml添加注释的语法规则: XML 中的注释 在 XML 中编写注释的语法与 HTML 的语法很相似: <!--This is a co ...

  7. 技术管理进阶——什么Leader值得追随?

    原创不易,求分享.求一键三连 ​Leader眼里的主动性 前几天孙狗下面小A身上发生了一件Case,让他感到很疑惑: 有一个跨部门较多的项目推进不力,于是善于交流的他被临时提拔成项目负责人,但马上令人 ...

  8. 记-Golang日志文件读取及写入操作

    Golang语言的 os 包中OpenFile 函数,如下所示: func OpenFile(name string, flag int, perm FileMode) (*File, error) ...

  9. netty系列之:java中的base64编码器

    简介 什么是Base64编码呢?在回答这个问题之前,我们需要了解一下计算机中文件的分类,对于计算机来说文件可以分为两类,一类是文本文件,一类是二进制文件. 对于二进制文件来说,其内容是用二进制来表示的 ...

  10. 几个i的幂的累加公式1^2+2^2+3^2 2~5

    1^2+2^2+3^2+--+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+...+n^3=(1+2+3+...+n)^2 =[n(n+1)/2]^2 1^4+2^4+3^4+--+n ...