操作好像比较神秘。

发现 \(k\) 很小,考虑和 \(k\) 有关的 DP,考虑不出来。

费用提前计算,对 \(w_i\) 做后缀和,那么序列的权值就是 \(\sum_{i=1}^nyw_i\)。

考虑 DP,明显有 \(dp[n][x]=\max_{i=-k}^kdp[n-1][x+i]+i\times w_n\)。

注意到这个形式有点像 \((\max,+)\) 卷积,很容易发现右边的东西是一个一次函数。

一次函数一定是一个凸包,所以 DP 数组一定也是一个凸包。

我们需要计算的就是两个凸包的闵可夫斯基和。闵可夫斯基和是将两个凸包的点按照斜率归并起来。

注意到一次函数的斜率都相同,在归并的时候可以视作将一段连续的点插入凸包。

然后因为 \(b_i\leq a_i\),每次操作结束后需要删掉一个后缀。

上述操作使用平衡树可以做到 \(O(n\log n)\),可以通过。

LGP5653口胡的更多相关文章

  1. Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1

    据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...

  2. 口胡FFT现场(没准就听懂了)&&FFT学习笔记

    前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...

  3. BZOJ 口胡记录

    最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...

  4. Atcoder/Topcoder 口胡记录

    Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...

  5. NOIP2016考前做题(口胡)记录

    NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...

  6. 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图

    关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...

  7. 「口胡题解」「CF965D」Single-use Stones

    目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...

  8. PKUSC 2022 口胡题解

    \(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...

  9. 「线性基」学习笔记and乱口胡总结

    还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...

随机推荐

  1. Java多线程之读写锁机制

    Java多线程中有很多的锁机制,他们都有各自的应用场景,例如今天我说的这种锁机制:读写锁 读写锁,见名知意,主要可以进行两种操作,读和写操作,他们之间结合使用起来又是各不相同的.比如多个线程之间可以同 ...

  2. MySQL5.7 库、表结构、表字段的查询、更改操作

    1.查询所有数据库 SHOW DATABASES; 2.查询库中所有表 写法1: ① USE [DATABASE_NAME]; ② SHOW TABLES; 写法2: SHOW TABLES FROM ...

  3. opencv笔记--Active contours

    Active Contours 也称作 Snake,通过定义封闭区域曲线的能量函数,并使其最小化得到最终曲线. Active Contours 被用作物体边界精确定位上,opencv 给出了一个实现, ...

  4. Linux 基础练习题

    Linux 测试 1.找出/proc/meminfo文件中以s开头的行,至少用三种方式忽略大小写 [root@localhost proc]# grep -i '^s' /proc/meminfo [ ...

  5. Solution -「LOCAL」充电

    \(\mathcal{Description}\)   给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...

  6. CentOS7下Jumpserver V3.0 部署

    环境准备 # 准备一台 2核4G (最低)且可以访问互联网的 64 位 Centos 7 主机 [root@localhost ~]# hostnamectl --static set-hostnam ...

  7. MyBatis功能点一应用:二级缓存整合redis

    Mybatis提供了默认的cache实现PerpetualCache,那为什么还要整合第三方的框架redis?因为Mybatis提供的cache实现为单机版,无法实现分布式存储(即本机存储的数据,其他 ...

  8. ESXI系统从0搭建流程

    ESXI系统从0搭建流程 简单介绍 简单介绍:项目中使用到了这个系统,我自己不会搭建,但是请教别人之后自己成功搭建出来了此系统.所以在此记录一下搭建流程,希望能够帮助"零"小白. ...

  9. Oracle表数据或结构误删还原

    数据误删 表结构没有发生改变 --开启表字段转移,不开启无法还原 alter table 表名 enable row movement; --数据闪回 flashback table 表名 to ti ...

  10. NSSCTF-easyupload2.0

    相对于easyupload3.0,这个easyupload2.0就简单的很多,也可以使用和3.0一样的做法,但是应该还是有别的做法,就比如可以使用phtml这个后缀绕过检测 使用BP抓包修改一下 放包 ...