操作好像比较神秘。

发现 \(k\) 很小,考虑和 \(k\) 有关的 DP,考虑不出来。

费用提前计算,对 \(w_i\) 做后缀和,那么序列的权值就是 \(\sum_{i=1}^nyw_i\)。

考虑 DP,明显有 \(dp[n][x]=\max_{i=-k}^kdp[n-1][x+i]+i\times w_n\)。

注意到这个形式有点像 \((\max,+)\) 卷积,很容易发现右边的东西是一个一次函数。

一次函数一定是一个凸包,所以 DP 数组一定也是一个凸包。

我们需要计算的就是两个凸包的闵可夫斯基和。闵可夫斯基和是将两个凸包的点按照斜率归并起来。

注意到一次函数的斜率都相同,在归并的时候可以视作将一段连续的点插入凸包。

然后因为 \(b_i\leq a_i\),每次操作结束后需要删掉一个后缀。

上述操作使用平衡树可以做到 \(O(n\log n)\),可以通过。

LGP5653口胡的更多相关文章

  1. Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1

    据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...

  2. 口胡FFT现场(没准就听懂了)&&FFT学习笔记

    前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...

  3. BZOJ 口胡记录

    最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...

  4. Atcoder/Topcoder 口胡记录

    Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...

  5. NOIP2016考前做题(口胡)记录

    NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...

  6. 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图

    关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...

  7. 「口胡题解」「CF965D」Single-use Stones

    目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...

  8. PKUSC 2022 口胡题解

    \(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...

  9. 「线性基」学习笔记and乱口胡总结

    还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...

随机推荐

  1. Android--控件的滑动事件

    感谢大佬:https://www.cnblogs.com/zkb-0928/p/3768209.html 感谢大佬:https://blog.csdn.net/sweiqin/article/deta ...

  2. shell——并发工具parallel

    官方文档:https://www.gnu.org/software/parallel/parallel_tutorial.html 安装 (wget -O - pi.dk/3 || curl pi.d ...

  3. C++改变数组长度

    C++改变数组长度 代码 //改变数组长度 #ifndef CHANGELENGTH1D_H #define CHANGELENGTH1D_H #include<stdexcept> #i ...

  4. Note/Solution -「洛谷 P5158」「模板」多项式快速插值

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \((x_i,y_i)\),求一个不超过 \(n-1\) 次的多项式 \(f(x)\),使得 \(f(x ...

  5. 使用stream流按时间段进行分组

    public Map<String, Object> blogClassify(Integer pageNo, Integer pageSize) { // 1.创建分页page对象 Pa ...

  6. SpringCloud微服务实战——搭建企业级开发框架(三十八):搭建ELK日志采集与分析系统

      一套好的日志分析系统可以详细记录系统的运行情况,方便我们定位分析系统性能瓶颈.查找定位系统问题.上一篇说明了日志的多种业务场景以及日志记录的实现方式,那么日志记录下来,相关人员就需要对日志数据进行 ...

  7. Linux 下 Git版本升级

    一.下载需要安装的版本号 wget https://mirrors.edge.kernel.org/pub/software/scm/git/git-2.24.0.tar.gz 二.安装需求 yum ...

  8. [源码解析] NVIDIA HugeCTR,GPU 版本参数服务器---(7) ---Distributed Hash之前向传播

    [源码解析] NVIDIA HugeCTR,GPU 版本参数服务器---(7) ---Distributed Hash之前向传播 目录 [源码解析] NVIDIA HugeCTR,GPU 版本参数服务 ...

  9. “百度杯”CTF比赛 九月场 类型:Web 题目名称:SQLi ---不需要逗号的注入技巧

    今天在i春秋做题的时候遇到了一道非常好的题目,于是在参考了wp的基础上自己复现了一遍,算作一种技巧的学习与收藏吧. 题目i春秋连接:https://www.ichunqiu.com/battalion ...

  10. 生产环境想要对某个Pod排错、数据恢复、故障复盘有什么办法?

    生产环境想要对某个Pod排错.数据恢复.故障复盘有什么办法? k8s考点灵魂拷问9连击之5 考点之简单描述一下k8s副本集ReplicaSet有什么作用? 考点之为什么ReplicaSet将取代Rep ...