题目地址:http://poj.org/problem?id=2559

Description

A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists
of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:



Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned
at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

Input

The input contains several test cases. Each test case describes a histogram and starts with an integer
n, denoting the number of rectangles it is composed of. You may assume that
1<=n<=100000. Then follow n integers h1,...,hn, where
0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is
1. A zero follows the input for the last test case.

Output

For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

Sample Input

7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0

Sample Output

8
4000

如果确定了长方形的左端点L和右端点R,那么最大可能的高度就是min{hi|L <= i < R}。

L[i] = (j <= i并且h[j-1] < h[i]的最大的j)

R[i] = (j > i并且h[j] < h[i]的最小的j)

#include <stdio.h>

#define MAX_N 100000

int n;
int h[MAX_N];
int L[MAX_N], R[MAX_N];
int stack[MAX_N]; long long max(long long a, long long b){
return (a > b) ? a : b;
} void solve(){
//计算L
long long ans = 0;
int t = 0;
int i;
for (i = 0; i < n; ++i){
while (t > 0 && h[stack[t-1]] >= h[i]) t--;
L[i] = (t == 0) ? 0 : (stack[t-1] + 1);
stack[t++] = i;
} //计算R
t = 0;
for (i = n - 1; i >= 0; --i){
while (t > 0 && h[stack[t-1]] >= h[i]) t--;
R[i] = (t == 0) ? n : stack[t-1];
stack[t++] = i;
} for (i = 0; i < n; ++i){
ans = max(ans, (long long)h[i] * (R[i] - L[i]));
}
printf("%lld\n", ans);
} int main(void){
int i;
while (scanf("%d", &n) != EOF && n != 0){
for (i = 0; i < n; ++i)
scanf("%d", &h[i]);
solve();
} return 0;
}

参考资料:挑战程序设计竞赛(第2版)

POJ 2559 Largest Rectangle in a Histogram -- 动态规划的更多相关文章

  1. [POJ 2559]Largest Rectangle in a Histogram 题解(单调栈)

    [POJ 2559]Largest Rectangle in a Histogram Description A histogram is a polygon composed of a sequen ...

  2. poj 2559 Largest Rectangle in a Histogram 栈

    // poj 2559 Largest Rectangle in a Histogram 栈 // // n个矩形排在一块,不同的高度,让你求最大的矩形的面积(矩形紧挨在一起) // // 这道题用的 ...

  3. stack(数组模拟) POJ 2559 Largest Rectangle in a Histogram

    题目传送门 /* 题意:宽度为1,高度不等,求最大矩形面积 stack(数组模拟):对于每个a[i]有L[i],R[i]坐标位置 表示a[L[i]] < a[i] < a[R[i]] 的极 ...

  4. poj 2559 Largest Rectangle in a Histogram (单调栈)

    http://poj.org/problem?id=2559 Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 6 ...

  5. POJ 2559 Largest Rectangle in a Histogram (单调栈或者dp)

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15831 ...

  6. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  7. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    传送门 Description A histogram is a polygon composed of a sequence of rectangles aligned at a common ba ...

  8. POJ 2559 Largest Rectangle in a Histogram

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18942   Accepted: 6083 Description A hi ...

  9. 题解报告:poj 2559 Largest Rectangle in a Histogram(单调栈)

    Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base l ...

随机推荐

  1. Windows 环境下基于 nginx 的本地 PyPI 源

    Windows 环境下基于 nginx 的本地 PyPI 源的搭建: 1.登录 nginx 官网,下载安装包

  2. .Net Core-TagHelpers-Environment

    当我们新建一个.net core项目时,发现页面中有个奇怪的TagHelper元素,如下:     <environment names="Development"> ...

  3. Windows Server 2008找回密码

    1.通过Windows Server 2008 R2的安装光盘引导计算机启动,映像加载完毕后 ,按 Shift+F10 ,打开命令提示符界面,进入Windows目录所在分区(cd windows\sy ...

  4. 【转】如何在vmware中如何设置ip

    如何在vmware中如何设置ip 1.修改网络接口选hostonly2.虚拟机里安装vmware-tool,对鼠标和图形进行更好地支持.如果你在图形界面下,首先要切换到文本模式.右键点击桌面,打开一个 ...

  5. 继续推广我的新博客xysay:http://www.xysay.com/

    RT 博客收拾了一下,准备以后就在那里记录论文笔记啦,求交流,求推荐,求友链~~~ http://www.xysay.com/

  6. Twenty Newsgroups Classification任务之二seq2sparse(3)

    接上篇,如果想对上篇的问题进行测试其实可以简单的编写下面的代码: package mahout.fansy.test.bayes.write; import java.io.IOException; ...

  7. iOS之宏定义#define

    最基本的宏定义用法 #define aaa bbb 表示用aaa替换bbb的内容. 宏作用范围 宏的作用范围是在当前文件内, 如果需要作用于其他类(如在类b调用类a已定义宏),那么需要在类b引入类a的 ...

  8. a标签中关于javascript:void(0)的几个问题

    最近看了好几个关于<a>标签和javascript:void(0)的帖子,谨记于此,以资查阅.注:以下代码未经全面测试,但每一种方法可能会出现的情况都基本做了说明. 在做页面时,如果想做一 ...

  9. Routing and controllers

    Routing and controllers We will build a very simple inventory system to display our album collection ...

  10. Java基础知识强化之网络编程笔记19:Android网络通信之 HttpClient和传统Post、Get方式的区别

    1. HttpClient是什么 ?     HTTP 协议可能是现在 Internet 上使用得最多.最重要的协议了,越来越多的 Java 应用程序需要直接通过 HTTP 协议来访问网络资源.虽然在 ...