【BZOJ-2839】集合计数 容斥原理 + 线性推逆元 + 排列组合
2839: 集合计数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 229 Solved: 120
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
Sample Output
HINT
【样例说明】
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}
【数据说明】
对于100%的数据,1≤N≤1000000;0≤K≤N;
Source
Solution
先手推了N=2~3,K的值,又推了推式子,大体上有所发现
首先N个元素中交集出现i个元素的的方案数为$C^{i}_{n}$
那么剩下$2^{n-i}$个其他集合,任选的方案总数为$2^{2^{n-1}-1}$种
最后统计答案$\sum_{k<=i<=N}(-1)^{i-k}*C^{i}_{n}*C^{k}_{i}*(2^{2^{n-i}-1})$
数据范围明显不能直接预处理C,所以先预处理阶乘和逆元再计算C即可
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int N,K;
const long long p=1e9+;
#define maxn 1000010
long long inv[maxn],fac[maxn],ans;
void GetInv() {inv[]=;for (int i=; i<=N; i++) inv[i]=(p-p/i)*inv[p%i]%p;}
void Prework() {inv[]=;for (int i=; i<=N; i++)inv[i]=inv[i]*inv[i-]%p;}
void GetFac() {fac[]=;for (int i=; i<=N; i++) fac[i]=(long long)fac[i-]*i%p;}
long long C(long long n,long long m) {return fac[n]*inv[m]%p*inv[n-m]%p;}
int main()
{
scanf("%d %d",&N,&K);
GetFac(); GetInv(); Prework();
for (long long i=N,tmp=; i>=K; i--,tmp=tmp*tmp%p)
ans=(ans+((i-K&?p-:)*C(N,i)%p*C(i,K)%p*(tmp+p-)%p))%p;
printf("%lld\n",ans);
return ;
}
丧心病狂的压代码
【BZOJ-2839】集合计数 容斥原理 + 线性推逆元 + 排列组合的更多相关文章
- BZOJ 2839: 集合计数 [容斥原理 组合]
2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...
- bzoj 2839 : 集合计数 容斥原理
因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为 ...
- BZOJ 2839: 集合计数 解题报告
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...
- Bzoj 2839 集合计数 题解
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 495 Solved: 271[Submit][Status][Discuss] ...
- ●BZOJ 2839 集合计数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- bzoj 2839: 集合计数【容斥原理+组合数学】
首先,考虑容斥,我们所要的答案是并集至少有\( k \)个数的方案数减去并集至少有\( k+1 \)个数的方案数加上并集至少有\( k \)个数的方案数-- 在n个数中选i个的方案数是\( C_{n} ...
- [BZOJ 2839]集合计数
Description 题库链接 有 \(2^n\) 个集合,每个集合只包含 \([1,n]\) ,且这些集合两两不同.问有多少种选择方法(至少选一个),使得这些集合交集大小为 \(k\) . \(0 ...
- bzoj 2839 集合计数——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i ...
随机推荐
- Maven 常用命令, 备忘
Maven在现在的Java项目中有非常重要的地位, Maven已经不是Ant这样仅仅用于构建, 首先, 它是一个构建工具, 把源代码编译并打包成可发布应用的构件工具其次, 它是一个依赖管理工具, 集中 ...
- python学习之用正则处理log(持续更新,ftace)
1. ftrace的输出如下图所示: [003] 48375.494595: clear_buddies <-pick_next_entity m=re.match("^\[([0-9 ...
- android 混淆文件proguard.cfg详解
-optimizationpasses 5 [代码压缩级别]-dontusemixedcaseclassnames [混淆时不会产生形形色色的类名 ]-dontskipnonpubliclibrar ...
- 用C++11的std::async代替线程的创建
c++11中增加了线程,使得我们可以非常方便的创建线程,它的基本用法是这样的: void f(int n); std::thread t(f, n + 1); t.join(); 但是线程毕竟是属于比 ...
- canvas中的碰撞检测笔记
用 canvas 做小游戏或者特效,碰撞检测是少不了的.本文将会涉及普通的碰撞检测,以及像素级的碰撞检测.(本文的碰撞检测均以矩形为例) 普通碰撞检测 普通的矩形碰撞检测比较简单.即已知两个矩形的各顶 ...
- meta标签大全
meta标签大全 <!-- x-ua-compatible(浏览器兼容模式) 仅对IE8+以效 告诉浏览器以什么版本的IE的兼容模式来显示网页 <meta ...
- Windows Server+AMD GPU+HDMI时_黑边_不铺满问题的解决办法
HDMI接显示器或电视,有黑边或者被放大了是个很常见的问题,显卡设置界面里改下Scale或者Overscan/Underscan就行,可问题是WindowsServer版的CCC没有控制颜色对比度和缩 ...
- winddows 运行指令 (2)
cmd.exe--------CMD命令提示符 chkdsk.exe-----Chkdsk磁盘检查 certmgr.msc----证书管理实用程序 calc-----------启动计算器 charm ...
- 转一篇关于如何在Unity里使用Protobuf
原帖地址: http://purdyjotut.blogspot.com/2013/10/using-protobuf-in-unity3d.html 先转过来,等时间合适了,再来收拾 Using P ...
- Day Three(Beta)
站立式会议 站立式会议内容总结 331 今天:列表关于div控制长度选择控制字段长度而非cssCtrl;editor学习使用 遇到的问题:无 明天:复习,没什么时间花在代码上,可以构思下闹钟的过程 4 ...