2839: 集合计数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 229  Solved: 120
[Submit][Status][Discuss]

Description

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得
它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

Input

一行两个整数N,K

Output

一行为答案。

Sample Input

3 2

Sample Output

6

HINT

【样例说明】
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}

【数据说明】
     对于100%的数据,1≤N≤1000000;0≤K≤N;

Source

Solution

先手推了N=2~3,K的值,又推了推式子,大体上有所发现

首先N个元素中交集出现i个元素的的方案数为$C^{i}_{n}$

那么剩下$2^{n-i}$个其他集合,任选的方案总数为$2^{2^{n-1}-1}$种

最后统计答案$\sum_{k<=i<=N}(-1)^{i-k}*C^{i}_{n}*C^{k}_{i}*(2^{2^{n-i}-1})$

数据范围明显不能直接预处理C,所以先预处理阶乘和逆元再计算C即可

Code

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int N,K;
const long long p=1e9+;
#define maxn 1000010
long long inv[maxn],fac[maxn],ans;
void GetInv() {inv[]=;for (int i=; i<=N; i++) inv[i]=(p-p/i)*inv[p%i]%p;}
void Prework() {inv[]=;for (int i=; i<=N; i++)inv[i]=inv[i]*inv[i-]%p;}
void GetFac() {fac[]=;for (int i=; i<=N; i++) fac[i]=(long long)fac[i-]*i%p;}
long long C(long long n,long long m) {return fac[n]*inv[m]%p*inv[n-m]%p;}
int main()
{
scanf("%d %d",&N,&K);
GetFac(); GetInv(); Prework();
for (long long i=N,tmp=; i>=K; i--,tmp=tmp*tmp%p)
ans=(ans+((i-K&?p-:)*C(N,i)%p*C(i,K)%p*(tmp+p-)%p))%p;
printf("%lld\n",ans);
return ;
}

丧心病狂的压代码

【BZOJ-2839】集合计数 容斥原理 + 线性推逆元 + 排列组合的更多相关文章

  1. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

  2. bzoj 2839 : 集合计数 容斥原理

    因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为 ...

  3. BZOJ 2839: 集合计数 解题报告

    BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...

  4. Bzoj 2839 集合计数 题解

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 495  Solved: 271[Submit][Status][Discuss] ...

  5. ●BZOJ 2839 集合计数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...

  6. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

  7. bzoj 2839: 集合计数【容斥原理+组合数学】

    首先,考虑容斥,我们所要的答案是并集至少有\( k \)个数的方案数减去并集至少有\( k+1 \)个数的方案数加上并集至少有\( k \)个数的方案数-- 在n个数中选i个的方案数是\( C_{n} ...

  8. [BZOJ 2839]集合计数

    Description 题库链接 有 \(2^n\) 个集合,每个集合只包含 \([1,n]\) ,且这些集合两两不同.问有多少种选择方法(至少选一个),使得这些集合交集大小为 \(k\) . \(0 ...

  9. bzoj 2839 集合计数——二项式反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i ...

随机推荐

  1. IO调度器(二) IO的中断返回

    IO的中断返回也是相当让人激动的一件事情: 28470  1)               |        handle_irq() { 28471  1)   0.237 us    |      ...

  2. VS XML注释

    1.<c> <c>text</c> 其中: text 希望将其指示为代码的文本. 备注 <c> 标记为您提供了一种将说明中的文本标记为代码的方法.使用 ...

  3. java与c#的反射性能比较

    java与c#都支持反射,但是从网络上搜索两大阵营对于反射的态度,基本上.net开发人员都建议慎用反射,因为会有性能开销:反到是java阵营里好象在大量肆无忌惮的使用反射.于是写了下面的测试代码: c ...

  4. MvvmLight ToolKit .Net4.5版本 CanExecute不能刷新界面bug

    一 问题重现    1.在使用最新版本v5.1的MvvmLight中(其实这个问题很早就有了),发现CanExecute不能很好地工作了.一个简单的工程,只有MainWindow和MainWindow ...

  5. Java 基础【09】 日期类型

    java api中日期类型的继承关系 java.lang.Object --java.util.Date --java.sql.Date --java.sql.Time --java.sql.Time ...

  6. Infer.net 开源组件: 1, 机器学习入门,要从贝叶斯说起

    我的入门方式,先从应用现象中,总结规律反推本质.一头扎进理论书籍是不对的. 老外的先进,还是体现在传承方面.没办法,我们竞争压力大,有好东西藏着掖着.大家都苦逼 我最开始是从介绍,有了基本概念,见xx ...

  7. CoordinatorLayout自定义Bahavior特效及其源码分析

    @[CoordinatorLayout, Bahavior] CoordinatorLayout是android support design包中可以算是最重要的一个东西,运用它可以做出一些不错的特效 ...

  8. centos hadoop搭建准备

    永久修改主机名:hostnamectl set-hostname <hostname> IP地址: BOOTPROTO=static IPADDR=192.168.31.128NETMAS ...

  9. DLL丢失修复

    DLL丢失修复,简答傻瓜式!    DirectX修复工具(DirectX Repair)是一款系统级工具软件,简便易用.本程序为绿色版,无需安装,可直接运行. 本程序的主要功能是检测当前系统的Dir ...

  10. Beta版本冲刺———第二天

    会议照片: 项目燃尽图: 1.项目进展: 昨天的困难:分数排行榜的设计 今天解决的进度:完成了界面优化以及建立新的排行榜选项卡界面. 明天要做的事情:分数排行榜的功能设计 2.每个人每天做的事情 郭怡 ...