Remainder

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3036    Accepted Submission(s): 679

Problem Description
Coco is a clever boy, who is good at mathematics. However, he is puzzled by a difficult mathematics problem. The problem is: Given three integers N, K and M, N may adds (‘+’) M, subtract (‘-‘) M, multiples (‘*’) M or modulus (‘%’) M (The definition of ‘%’ is given below), and the result will be restored in N. Continue the process above, can you make a situation that “[(the initial value of N) + 1] % K” is equal to “(the current value of N) % K”? If you can, find the minimum steps and what you should do in each step. Please help poor Coco to solve this problem. 
You should know that if a = b * q + r (q > 0 and 0 <= r < q), then we have a % q = r.
 
Input
There are multiple cases. Each case contains three integers N, K and M (-1000 <= N <= 1000, 1 < K <= 1000, 0 < M <= 1000) in a single line.
The input is terminated with three 0s. This test case is not to be processed.
 
Output
For each case, if there is no solution, just print 0. Otherwise, on the first line of the output print the minimum number of steps to make “[(the initial value of N) + 1] % K” is equal to “(the final value of N) % K”. The second line print the operations to do in each step, which consist of ‘+’, ‘-‘, ‘*’ and ‘%’. If there are more than one solution, print the minimum one. (Here we define ‘+’ < ‘-‘ < ‘*’ < ‘%’. And if A = a1a2...ak and B = b1b2...bk are both solutions, we say A < B, if and only if there exists a P such that for i = 1, ..., P-1, ai = bi, and for i = P, ai < bi)
 
Sample Input
2 2 2
-1 12 10
0 0 0
 
Sample Output
0
2
*+

 #include<stdio.h>
#include<queue>
#include<string.h>
#include<algorithm>
#include<math.h>
int n , k , m , ini , km ;
int en ;
bool vis[] ;
struct node
{
int w ;
int dir , nxt , step ;
}e[];
int l , r ;
/*
bool cmp (const node &a , const node &b)
{
if (a.step < b.step ) return true ;
if (a.step == b.step ) return a.dir < b.dir ;
return false ;
}*/ int calc (int u , int id)
{
if (id == ) return (u + m) % km;
else if (id == ) return (u - m) % km ;
else if (id == ) return (u * m) % km ;
else return (u % m + m) % m % km;
} bool bfs ()
{
// printf ("ini=%d\n" , ini ) ;
node tmp , ans ;
l = , r = ;
vis[ (n % k + k) % k] = ;
e[l].w = n , e[l].dir = - , e[l].nxt = - , e[l].step = ;
while ( l != r) {
// std::sort (e + l , e + r , cmp ) ;
ans = e[l] ;
// printf ("S---%d = %d\n" , ans.w , ans.step ) ;
for (int i = ; i < ; i ++) {
tmp = ans ;
tmp.w = calc (tmp.w , i) ;
if (vis[(tmp.w % k + k) % k]) continue ; vis[ (tmp.w % k + k) % k] = ;
tmp.dir = i ; tmp.nxt = l ; tmp.step ++ ;
e[r ++] = tmp ;
if ( ((tmp.w % k + k) % k ) == ini) {
// printf ("final : %d\n" , tmp.step ) ;
// printf ("answer:%d\n" , tmp.w ) ;
return true ;
}
// printf ("%d = %d\n" , tmp.w , tmp.step ) ;
}
l ++ ;
}
return false ;
} void dfs (int id , int deep)
{
if (e[id].nxt == -) {
printf ("%d\n" , deep ) ;
return ;
}
// printf ("ID=%d , %d \n" , id , e[id].dir ) ;
dfs (e[id].nxt , deep + ) ;
int t = e[id].dir ;
// printf ("t=%d\n" , t ) ;
if (t == ) printf ("+") ;
else if (t == ) printf ("-") ;
else if (t == ) printf ("*") ;
else if (t == ) printf ("%%") ;
} int main ()
{
// freopen ("a.txt" , "r" , stdin ) ;
while (~ scanf ("%d%d%d" , &n , &k , &m )) {
if (n == && k == && m == ) break ;
memset (vis , , sizeof(vis)) ;
ini = ((n+)%k + k) % k ;
/* if (bfs () ) {puts ("yes") ; printf ("l=%d\n" , l ) ; }
else puts ("no") ;*/
km = k * m ;
if (bfs ()) dfs (r - , ) ;
else printf ("") ;
puts ("") ; //puts ("") ;
}
return ;
}

wa到死。
一个个坑等你跳,比如说printf ("%%") ;

% (k * m) ;

mod : a mod b = (a % b + b) % b ;

http://www.cnblogs.com/qiufeihai/archive/2012/08/28/2660272.html

hdu.1104.Remainder(mod && ‘%’ 的区别 && 数论(k*m))的更多相关文章

  1. HDU 1104 Remainder( BFS(广度优先搜索))

    Remainder Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  2. hdu - 1104 Remainder (bfs + 数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=1104 注意这里定义的取模运算和计算机的%是不一样的,这里的取模只会得到非负数. 而%可以得到正数和负数. 所以需 ...

  3. HDU 1104 Remainder(BFS 同余定理)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1104 在做这道题目一定要对同余定理有足够的了解,所以对这道题目对同余定理进行总结 首先要明白计算机里的 ...

  4. HDU 1104 Remainder (BFS)

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1104 题意:给你一个n.m.k,有四种操作n+m,n-m,n*m,n%m,问你最少经过多少步,使得最后 ...

  5. HDU 1104 Remainder

    与前一题类似,也是BFS+记录路径, 但是有很多BUG点, 第一MOD操作与%不同i,其实我做的时候注意到了我们可以这样做(N%K+K)%K就可以化为正数,但是有一点要注意 N%K%M!=N%M%K; ...

  6. HDU 1104 Remainder (BFS求最小步数 打印路径)

    题目链接 题意 : 给你N,K,M,N可以+,- ,*,% M,然后变为新的N,问你最少几次操作能使(原来的N+1)%K与(新的N)%k相等.并输出相应的操作. 思路 : 首先要注意题中给的%,是要将 ...

  7. HDU 1104 Remainder (BFS(广度优先搜索))

    Remainder Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  8. hdu 1104 数论+bfs

    Remainder Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  9. HDU 4983 Goffi and GCD(数论)

    HDU 4983 Goffi and GCD 思路:数论题.假设k为2和n为1.那么仅仅可能1种.其它的k > 2就是0种,那么事实上仅仅要考虑k = 1的情况了.k = 1的时候,枚举n的因子 ...

随机推荐

  1. AC 自动机

    AC自动机(Aho-Corasick Automata)是经典的多模式匹配算法.从前我学过这个算法,但理解的不深刻,现在已经十分不明了了.现在发觉自己对大部分算法的掌握都有问题,决定重写一系列博客把学 ...

  2. linux下安装zookeeper(单机版)

    Zookeeper 分布式服务框架是用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务.状态同步服务.集群管理.分布式应用配置项的管理等.本文主要从使用者角度来介绍一下Zookeeper ...

  3. Hibernate学习总结

    首先声明这是个坑爹的框架 属于ssh经典框架中的持久层框架,说白了就是管理数据库的. 下载地址:http://hibernate.org/orm/ 这里写了版本5.2,下载下来的基本不怎么会用,因为文 ...

  4. ubuntu 重启 nginx 失败,* Restarting nginx nginx ...fail!

    ubuntu 重启 nginx 失败,* Restarting nginx nginx ...fail!       执行 nginx 重启服务时,提示失败如下: $ sudo service ngi ...

  5. Java简单的系统登陆

    class Check{ public boolean validate(String name,String password){ if(name.equals("lixinghua&qu ...

  6. 使用ASP.NET Web Api构建基于REST风格的服务实战系列教程【外传】——Attribute Routing

    系列导航地址http://www.cnblogs.com/fzrain/p/3490137.html 题外话:由于这个技术点是新学的,并不属于原系列,但借助了原系列的项目背景,故命名外传系列,以后也可 ...

  7. 如何写好一篇高质量的paper

    http://blog.csdn.net/tiandijun/article/details/41775223 这篇文章来源于中科院Zhouchen Lin 教授的report,有幸读到,和大家分享一 ...

  8. Struts2版本配置2.1以前与以后---关于filter的配置

    严重: Dispatcher initialization failed java.lang.RuntimeException JavaStrutsfreemarkerApacheXML  严重: D ...

  9. Yii2 – 如何写一个插件 , 如何做一个扩展

    原文地址: http://www.fancyecommerce.com/2016/05/10/yii2-%E5%A6%82%E4%BD%95%E5%86%99%E4%B8%80%E4%B8%AA%E6 ...

  10. jQuery版本升级踩坑大全

    背景 -------------------------------------------------------------------------------- jQuery想必各个web工程师 ...