原文:http://blog.csdn.net/yao_zhuang/article/details/2532279

下载cvgabor.cppcvgabor.h到你的C/C++工程目录下

注:在我的资源中有改进过的cvgabor类

相关链接为:http://download.csdn.net/source/490114

特别注意:使用该类需要opencv库的支持,如何配置环境参见:http://www.opencv.org.cn/index.php/Template:Install

它有如下的功能:

生成特定方向和尺度的gabor

生成可以显示或者保存的gabor核的实部,虚部

图像的实部,虚部或者主要(Magnitude)响应

响应可以保存在XML文件中

  1. #include "cvgabor.h"
  2. int main(){
  3. //创建一个方向是PI/4而尺度是3的gabor
  4. double Sigma = 2*PI;
  5. double F = sqrt(2.0);
  6. CvGabor *gabor1 = new CvGabor;
  7. gabor1->Init(PI/4, 3, Sigma, F);
  8. //获得实部并显示它
  9. IplImage *kernel = cvCreateImage( cvSize(gabor1->get_mask_width(), gabor1->get_mask_width()), IPL_DEPTH_8U, 1);
  10. kernel = gabor1->get_image(CV_GABOR_REAL);
  11. cvNamedWindow("Gabor Kernel", 1);
  12. cvShowImage("Gabor Kernel", kernel);
  13. cvWaitKey(0);
  14. //载入一个图像并显示
  15. IplImage *img = cvLoadImage( "D:/Demo.jpg", CV_LOAD_IMAGE_GRAYSCALE );
  16. cvNamedWindow("Original Image", 1);
  17. cvShowImage("Original Image", img);
  18. cvWaitKey(0);
  19. //获取载入图像的gabor滤波响应的实部并且显示
  20. IplImage *reimg = cvCreateImage(cvSize(img->width,img->height), IPL_DEPTH_8U, 1);
  21. gabor1->conv_img(img, reimg, CV_GABOR_REAL);
  22. cvNamedWindow("Real Response", 1);
  23. cvShowImage("Real Response",reimg);
  24. cvWaitKey(0);
  25. cvDestroyWindow("Real Response");
  26. //获取载入图像的gabor滤波响应的虚部并且显示
  27. //  IplImage *reimg = cvCreateImage(cvSize(img->width,img->height), IPL_DEPTH_8U, 1);
  28. gabor1->conv_img(img, reimg, CV_GABOR_IMAG);
  29. cvNamedWindow("Imaginary Response", 1);
  30. cvShowImage("Imaginary Response",reimg);
  31. cvWaitKey(0);
  32. cvDestroyWindow("Imaginary Response");
  33. //获取载入图像的gabor滤波响应的模并且显示
  34. //  IplImage *reimg = cvCreateImage(cvSize(img->width,img->height), IPL_DEPTH_8U, 1);
  35. gabor1->conv_img(img, reimg, CV_GABOR_MAG);
  36. cvNamedWindow("Magnitude Response", 1);
  37. cvShowImage("Magnitude Response",reimg);
  38. cvWaitKey(0);
  39. cvDestroyWindow("Magnitude Response");
  40. /*
  41. //这个响应可以被取样为8位的灰度图。如果你要原始的浮点类型的数据,你可以这样做
  42. IplImage *reimg = cvCreateImage(cvSize(img->width,img->height), IPL_DEPTH_32F, 1);
  43. gabor1->conv_img(img, reimg, CV_GABOR_MAG);
  44. //然而,这些浮点数据是不能够以上面灰度图的形式简单的显示,但是它可以被保存在一个XML文件中。
  45. cvSave( "reimg.xml", (IplImage*)reimg, NULL, NULL, cvAttrList(0,0));
  46. */
  47. }

概念:

1.关于小波变换:

一种多分辨率分析工具,为不同尺度上信号的的分析和表征提供了精确和统一框架。它的原理是来源于Fourier变换!但是它比传统的Fourier变换有更多优点,比如:

1)小波变换可以覆盖整个频域; 
2)可以通过选取合适滤波器,减少或除去提取的不同特征之间的相关性; 
3)具有变焦特性,低频段可用高频率分辨率和低时间分辨率,在高频段可用低频率分辨率和高时间分辨率 
4)小波变换在实现上有快速算法(Mallat小波分析算法)。

提到小波变换必须提到小波函数,简单的说,积分为0的函数都可以作为小波函数,还可以通过一系列变化得到连续的小波变换式。 
小波变换适用小波函数族及其相应的尺度函数将原始信号分解成不同的频带。一般所说的小波变换仅递归分解信号的低频部分,以生成下一尺度的各频道输出。层层分解(图片不附了),这样的分解通常称为金字塔结构小波变换。

如果不仅仅对低通滤波器输出进行递归分解,而且也对高通滤波器的输出进行递归分解,则称之为小波包分解。(树状的图形) 
小波变换具有良好的时频局部化、尺度变换和方向特征,是分析纹理的有力工具。

2.Gabor 变换

根据模拟人类视觉系统而产生。通过模拟人类视觉系统,可以将视网膜成像分解成一组滤波图像,每个分解的图像能够反映频率和方向在局部范围内的强度变化。通过一组多通道Gabor滤波器,可以获得纹理特征。 
Gabor变换的根本就是Gabor滤波器的设计,而滤波器的设计又是其频率函数(U,V)和Gauss函数参数(一个)的设计。实际上,Gabor变换是为了提取信号Fourier变换的局部信息,使用了一个Gauss函数作为窗函数,因为一个Gauss函数的Fourier变换还是一个Gauss函 数,所以Fourier逆变换也是局部的。

通过频率参数和高斯函数参数的选取,Gabor变换可以选取很多纹理特征,但是Gabor是非正交的,不同特征分量之间有冗余,所以在对纹理图像的分析中效率不太高。

from: http://blog.csdn.net/yangtrees/article/details/7437672

学习OpenCV——Gabor函数的应用的更多相关文章

  1. 《学习OpenCV》练习题第四章第三题b

    #include <highgui.h> #include <cv.h> #include "opencv_libs.h" /* *<学习OpenCV ...

  2. 《学习OpenCV》练习题第四章第三题a

    #include <highgui.h> #include <cv.h> #include "opencv_libs.h" #pragma comment ...

  3. 《学习OpenCV》练习题第四章第二题

    #include <highgui.h> #include <cv.h> #pragma comment (lib,"opencv_calib3d231d.lib&q ...

  4. 学习opencv中文版教程——第二章

    学习opencv中文版教程——第二章 所有案例,跑起来~~~然而并没有都跑起来...我只把我能跑的都尽量跑了,毕竟看书还是很生硬,能运行能出结果,才比较好. 越着急,心越慌,越是着急,越要慢,越是陌生 ...

  5. 【从零学习openCV】IOS7下的人脸检測

    前言: 人脸检測与识别一直是计算机视觉领域一大热门研究方向,并且也从安全监控等工业级的应用扩展到了手机移动端的app,总之随着人脸识别技术获得突破,其应用前景和市场价值都是不可估量的,眼下在学习ope ...

  6. 【学习opencv第七篇】图像的阈值化

    图像阈值化的基本思想是,给定一个数组和一个阈值,然后根据数组中每个元素是低于还是高于阈值而进行一些处理. cvThreshold()函数如下: double cvThreshold( CvArr* s ...

  7. 【从零学习openCV】IOS7根据人脸检测

    前言: 人脸检測与识别一直是计算机视觉领域一大热门研究方向,并且也从安全监控等工业级的应用扩展到了手机移动端的app.总之随着人脸识别技术获得突破,其应用前景和市场价值都是不可估量的,眼下在学习ope ...

  8. [学习OpenCV攻略][002][Ubuntu下OpenCV安装]

    配置环境 操作系统 Ubuntu 12.04 OpenCV版本 opencv-1.0.0 学习书籍 <学习OpenCV> Liunx软件安装方法主要有3种: 1.编译安装,也就是通过编译源 ...

  9. 学习OpenCV——SVM

    学习OpenCV——SVM 学习SVM,首先通过http://zh.wikipedia.org/wiki/SVM, 再通过博客http://blog.csdn.net/yang_xian521/art ...

随机推荐

  1. jsp页面价格

    <div class='flo_left'> <h2 class='red'>订货价¥${productEntity.agentsPrice}</h2> <h ...

  2. preventDefault()方法

    该方法将通知 Web 浏览器不要执行与事件关联的默认动作(如果存在这样的动作). 例如,如果 type 属性是 "submit",在事件传播的任意阶段可以调用任意的事件句柄,通过调 ...

  3. 【androidstudio】将eclipse的项目导入android studio

    一.概述 最近正在实习公司迭代一个app,项目工程比较大,依赖的第三方服务.第三方库较多,比较复杂.因为公司项目一直是在ec上写的,没有android studio的版本.而大家都知道ec写代码远没有 ...

  4. 【android应用市场】android应用市场集合

    一.举例 1.酷市场 2.apkpure 国外的应用市场,可不用FQ,没有google play的一些限制 相当于google play的镜像,可以下载google play的应用 3.360手机助手 ...

  5. [LintCode] Continuous Subarray Sum 连续子数组之和

    Given an integer array, find a continuous subarray where the sum of numbers is the biggest. Your cod ...

  6. 修改apache的默认访问目录

    在我们新安装好apache后,我们如果输入我们的ip地址,我们访问到的是apache中的www文件夹. 这个www文件夹就是我们的默认目录,而这个目录是可以修改的: 打开conf文件夹里的httpd. ...

  7. jquery过滤器

    <html> <head> <meta charset="UTF-8"> <title>Document</title> ...

  8. c#语句 for循环嵌套

    1.打印三角形. 1) 方法一.for嵌套 方法二.只用一个for 2)倒三角 3)后三角 2.求100以内质数的和. 3.一张纸厚度为0.01米,至少对折多少次才能达到珠峰的高度?(用for死循环) ...

  9. nyoj-204

    描述国王有一个魔镜,可以把任何接触镜面的东西变成原来的两倍——只是,因为是镜子嘛,增加的那部分是反的. 比如一条项链,我们用AB来表示,不同的字母表示不同颜色的珍珠.如果把B端接触镜面的话,魔镜会把这 ...

  10. lsof 一切皆文件

    Docs » 工具参考篇 » 3. lsof 一切皆文件 Docs » 工具参考篇 » 3. lsof 一切皆文件 Edit on GitHub 3. lsof 一切皆文件¶ lsof(list op ...