题目链接

题意:给定n个数字,求超过5个数字的,最长的,变化相同的,不相交的重复子串

分析:男人8题中的一题!数列相邻两项做差,形成新数列,即求数列中的最长重复子串(不可相交)。

后缀数组+二分答案。假如二分得到答案L,如何知道它是可行的呢? 因为对于排序后的后缀,Lcp ( Suffix ( List [ i ] ) , Suffix ( List [ i - 1 ] ) ) 是所有与Suffix ( List [ i ] )的LCP值中最大的一个。 因为 Height [ i ] 表示的是排序后后缀数组中第i个后缀和第i-1个后缀的LCP值。 那么对于后缀数组中的一段 L - R , 若 Height [ L + 1 ] ~ Height [ R ] 全部大于等于L,那么就等价于第L到第R个后缀中任意两个后缀的LCP值都大于等于L。 那么只要取这里面相隔最远的两个后缀,若他们相距大于L,那么就是可行的。 ( 为什么不是等于L呢 ? 因为我们取的关键字是 S[i]-S[i-1] , 若相距等于L,那么两段里面的首尾相连了,是不符合条件的)

简单来说,先对height数组分段,然后看每段是否有满足题意的子串。

#include <cstdio>
#include <cstring>
#include <algorithm> const int N = 2e4 + 5;
int sa[N], rank[N], height[N];
int t[N], t2[N], c[N];
int a[N]; void da(int *s, int n, int m = 128) {
int i, p, *x = t, *y = t2;
for (i=0; i<m; ++i) c[i] = 0;
for (i=0; i<n; ++i) c[x[i]=s[i]]++;
for (i=1; i<m; ++i) c[i] += c[i-1];
for (i=n-1; i>=0; --i) sa[--c[x[i]]] = i;
for (int k=1; k<=n; k<<=1) {
for (p=0, i=n-k; i<n; ++i) y[p++] = i;
for (i=0; i<n; ++i) if (sa[i] >= k) y[p++] = sa[i] - k;
for (i=0; i<m; ++i) c[i] = 0;
for (i=0; i<n; ++i) c[x[y[i]]]++;
for (i=0; i<m; ++i) c[i] += c[i-1];
for (i=n-1; i>=0; --i) sa[--c[x[y[i]]]] = y[i];
std::swap (x, y);
p = 1; x[sa[0]] = 0;
for (i=1; i<n; ++i) {
x[sa[i]] = (y[sa[i-1]]==y[sa[i]] && y[sa[i-1]+k]==y[sa[i]+k] ? p - 1 : p++);
}
if (p >= n) break;
m = p;
}
} void calc_height(int n) {
int i, k = 0;
for (i=0; i<n; ++i) rank[sa[i]] = i;
for (i=0; i<n; ++i) {
if (k) k--;
int j = sa[rank[i]-1];
while (a[i+k] == a[j+k]) k++;
height[rank[i]] = k;
}
} int n; bool check(int m) {
int mn = sa[0], mx = sa[0];
for (int i=1; i<n; ++i) {
if (height[i] >= m) {
mn = std::min (mn, std::min (sa[i], sa[i-1]));
mx = std::max (mx, std::max (sa[i], sa[i-1]));
if (mn + m < mx) {
return true;
}
} else {
mn = mx = sa[i];
}
}
return false;
} int main() {
while (scanf ("%d", &n) == 1) {
if (!n) break;
for (int i=0; i<n; ++i) {
scanf ("%d", a+i);
if (i) a[i-1] = a[i] - a[i-1] + 100; //做差后有负数,+100保证为正数
} if (n <= 10) {
puts ("0");
continue;
} a[n-1] = 0;
da (a, n, 200);
calc_height (n); int ans = 0;
int left = 0, right = n;
while (left <= right) {
int mid = left + right >> 1;
if (check (mid)) {
ans = std::max (ans, mid);
left = mid + 1;
} else {
right = mid - 1;
}
} if (ans >= 4) {
printf ("%d\n", ans + 1);
} else {
puts ("0");
}
}
return 0;
}

  

后缀数组 POJ 1743 Musical Theme的更多相关文章

  1. POJ 1743 Musical Theme (后缀数组,求最长不重叠重复子串)(转)

    永恒的大牛,kuangbin,膜拜一下,Orz 链接:http://www.cnblogs.com/kuangbin/archive/2013/04/23/3039313.html Musical T ...

  2. poj 1743 Musical Theme(最长重复子串 后缀数组)

    poj 1743 Musical Theme(最长重复子串 后缀数组) 有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复 ...

  3. Poj 1743 Musical Theme (后缀数组+二分)

    题目链接: Poj  1743 Musical Theme 题目描述: 给出一串数字(数字区间在[1,88]),要在这串数字中找出一个主题,满足: 1:主题长度大于等于5. 2:主题在文本串中重复出现 ...

  4. POJ 1743 Musical Theme 【后缀数组 最长不重叠子串】

    题目冲鸭:http://poj.org/problem?id=1743 Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Su ...

  5. POJ 1743 Musical Theme 后缀数组 最长重复不相交子串

    Musical ThemeTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=1743 Description ...

  6. poj 1743 Musical Theme (后缀数组+二分法)

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16162   Accepted: 5577 De ...

  7. Poj 1743 Musical Theme(后缀数组+二分答案)

    Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 28435 Accepted: 9604 Descri ...

  8. POJ 1743 Musical Theme(后缀数组+二分答案)

    [题目链接] http://poj.org/problem?id=1743 [题目大意] 给出一首曲子的曲谱,上面的音符用不大于88的数字表示, 现在请你确定它主旋律的长度,主旋律指的是出现超过一次, ...

  9. [poj 1743] Musical Theme 后缀数组 or hash

    Musical Theme 题意 给出n个1-88组成的音符,让找出一个最长的连续子序列,满足以下条件: 长度大于5 不重叠的出现两次(这里的出现可以经过变调,即这个序列的每个数字全都加上一个整数x) ...

随机推荐

  1. HTML标记之Form表单

    一.表单的作用 从访问的Web站点的用户那里获得信息.访问者可以使用诸如文本域.列表框.复选框以及单选按钮之类的表单元素输入信息,然后单击某个按钮提交这些信息.是客户端与服务器端的交流途径. 二.说明 ...

  2. August 19th 2016 Week 34th Friday

    Friends are not the people you meet at the top, they are the people who were with you at the bottom. ...

  3. Linux vmstat字段解析

    vmstat命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,内存使用,虚拟内存交换情况,IO读写情况.这个命令是我查看Linux/Unix最 ...

  4. NPOI 1.2.4教程 –日期函数

    //Excel中有非常丰富的日期处理函数,在NPOI中同样得到了很好的支持.如下图: using NPOI.HSSF.UserModel; using NPOI.HPSF; using NPOI.PO ...

  5. cocospod 安装和使用 podfile 问题解决

    Podfile 不识别 usr_framework!,系本地Pods版本太低,要在0.36以上. 以下转自:http://blog.csdn.net/eqera/article/details/393 ...

  6. C#调用C++DLL的小总结5---和C++的DLL的联合调试

    http://fpcfjf.blog.163.com/blog/static/5546979320134922938373/ http://blog.csdn.net/jiangxinyu/artic ...

  7. 【sicily】卡片游戏

    卡片游戏  Time Limit: 1sec    Memory Limit:32MB Description 桌上有一叠牌,从第一张牌(即位于顶面的牌)开始从上往下依次编号为1~n.当至少还剩两张牌 ...

  8. 针对较大基数的排列组合算法Java实现类(n选m)

    package com.utils; import java.math.BigDecimal; import java.math.RoundingMode; public class PLZUUtil ...

  9. hdu 5437 优先队列+模拟 **

    比赛的时候虽然考虑到没门的情况,但是写了几组都能过,就没想了,23333,差一行代码就能A,遗憾~~ #include<cstdio> #include<iostream> # ...

  10. 人性的弱点&&影响力

    How wo win friends and influence people 人性的弱点 by 卡耐基 人际关系基本技巧 不要批评.谴责.抱怨 真诚的欣赏他人 激发他人的渴望 获得别人好感的方式 微 ...