代换一下变成多项式卷积,这里是的答案是两个卷积相减,FFT求一下两个卷积就可以啦

详细的题解:http://www.cnblogs.com/iwtwiioi/p/4126284.html

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 500003;
const double Pi = acos(- 1.0);
struct cp {
double r, i;
cp (double _r = 0.0, double _i = 0.0) : r(_r), i(_i) {}
cp operator + (const cp &x) const {return cp(r + x.r, i + x.i);}
cp operator - (const cp &x) const {return cp(r - x.r, i - x.i);}
cp operator * (const cp &x) const {return cp(r * x.r - i * x.i, r * x.i + i * x.r);}
};
int rev[N];
cp A[N];
void DFT(cp *a, int n, int flag) {
for(int i = 0; i < n; ++i) A[rev[i]] = a[i];
for(int i = 0; i < n; ++i) a[i] = A[i];
for(int m = 2; m <= n; m <<= 1) {
cp wn(cos(2.0 * Pi / m * flag), sin(2.0 * Pi / m * flag));
int mid = m >> 1;
for(int i = 0; i < n; i += m) {
cp w(1.0);
for(int j = 0; j < mid; ++j) {
cp u = a[i + j], t = a[i + j + mid] * w;
a[i + j] = u + t;
a[i + j + mid] = u - t;
w = w * wn;
}
}
}
if (flag == -1)
for(int i = 0; i < n; ++i)
a[i].r /= n;
}
void init(int &n) {
int k = 1, L = 0;
for(; k < n; k <<= 1, ++L);
n = k;
for(int i = 0; i < n; ++i) {
int t = i, ret = 0;
for(int j = 0; j < L; ++j)
ret <<= 1, ret |= (t & 1), t >>= 1;
rev[i] = ret;
}
}
void FFT(double *x, double *y, cp *a, cp *b, int len) {
for(int i = 0; i < len; ++i) a[i].r = x[i], a[i].i = 0.0;
for(int i = 0; i < len; ++i) b[i].r = y[i], b[i].i = 0.0;
DFT(a, len, 1); DFT(b, len, 1);
for(int i = 0; i < len; ++i) a[i] = a[i] * b[i];
DFT(a, len, -1);
}
cp a[N], b[N];
int n, len;
double g[N], q[N], f[N], ans[N];
int main() {
scanf("%d", &n); len = (n << 1) + 1;
init(len);
for(int i = 1; i <= n; ++i) scanf("%lf", &q[i]);
for(int i = 1; i <= n; ++i) g[i] = 1.0 / i / i;
for(int i = 0; i < n; ++i) f[i] = q[n - i]; FFT(q, g, a, b, len);
for(int i = 1; i <= n; ++i) ans[i] = a[i].r;
FFT(f, g, a, b, len);
for(int i = 1; i <= n; ++i) ans[i] -= a[n - i].r;
for(int i = 1; i <= n; ++i) printf("%.3lf\n", ans[i]); return 0;
}

题面如下,BZOJ上没有题面喔:


Description

给出n个数qi,给出Fj的定义如下: 
 
令Ei=Fi/qi,求Ei.

Input

第一行一个整数n。 
接下来n行每行输入一个数,第i行表示qi。

Output

n行,第i行输出Ei。 
与标准答案误差不超过1e-2即可。

Sample Input

5
4006373.885184
15375036.435759
1717456.469144
8514941.004912
1410681.345880

Sample Output

-16838672.693
3439.793
7509018.566
4595686.886
10903040.872

Hint

对于30%的数据,n≤1000。 
对于50%的数据,n≤60000。 
对于100%的数据,n≤100000,0<qi<1000000000。

Source

感谢nodgd放题

【BZOJ 3527】【ZJOI 2014】力的更多相关文章

  1. [ZJOI 2014]力

    Description 给出n个数qi,给出Fj的定义如下: $$F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_i ...

  2. 解题:ZJOI 2014 力

    题面 事实说明只会FFT板子是没有用的,还要把式子推成能用FFT/转化一下卷积的方式 虽然这个题不算难的多项式卷积 稍微化简一下可以发现实际是$q_i$和$\frac{1}{(i-j)^2}$在卷,然 ...

  3. BZOJ 3527 力 | FFT

    BZOJ 3527 力 | 分治 题意 给出数组q,$E_i = \sum_{i < j} \frac{q_i}{(i - j) ^ 2} - \sum_{i > j} \frac{q_i ...

  4. [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)

    [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...

  5. [BZOJ 1412][ZJOI 2009] 狼和羊的故事

    题目大意 有一个 (n times m) 的网格,每一个格子上是羊.狼.空地中的一种,羊和狼可以走上空地.现要在格子边上建立围栏,求把狼羊分离的最少围栏数. (1 leqslant n, ; m le ...

  6. 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)

    3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2003  Solved: 11 ...

  7. BZOJ 3527: [Zjoi2014]力

    Description 求 \(E_i=\sum _{j=0}^{i-1} \frac {q_j} {(i-j)^2}-\sum _{j=i+1}^{n-1} \frac{q_j} {(i-j)^2} ...

  8. BZOJ 3527: [ZJOI2014]力(FFT)

    BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \fra ...

  9. ●BZOJ 3527 [Zjoi2014]力

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3527 题解: FFT求卷积. $$\begin{aligned}E_i&=\frac ...

随机推荐

  1. Cornerstone 哪些错误

    1.Unable to connect to a repository at URl.............,The operation could not be completed 说明无法连接的 ...

  2. 在把webpack作为本地开发依赖安装的时候报错

    在把webpack作为本地开发依赖安装的时候报错 Refusing to install webpack as a dependency of itself 原因是package.json里的name ...

  3. android edittext 去边框 去下划线

    EditText的background属性设置为@null就搞定了:android:background="@null"style属性倒是可加可不加 附原文:@SlumberMac ...

  4. 单机多实例Tomcat部署

    单机单用户基础上, 如何运行多个tomcat实例. 首先是tomcat的目录结构 bin    – 包含所有运行tomcat的二进制和脚本文件 lib     – 包含tomcat使用的所有共享库 c ...

  5. keytool命令记录

    1.生成服务器端私钥kserver.keystore文件 2.根据私钥,导出服务器端安全证书 3.将服务器端证书,导入到客户端的Trust KeyStore中 4.生成客户端私钥kclient.key ...

  6. QT 对话框一

    标准文件对话框 其函数形式如下:: QString QFileDialog::getOpenFileName ( QWidget * parent=, const QString &capti ...

  7. MVC UpdateModel的未能更新XXXXX的类型模型

    关于MVC  UpdateModel的未能更新XXXXX的类型模型 的问题: 最近做MVC3的项目,相信很多人都碰到过这个问题,在此记录一下,异常:UpdateModel的未能更新XXXXX的类型模型 ...

  8. C#:DataTable映射成Model

    这是数据库开发中经常遇到的问题,当然,这可以用现成的ORM框架来解决,但有些时候,如果DataSet/DataTable是第三方接口返回的,ORM就不方便了,还得自己处理. 反射自然必不可少的,另外考 ...

  9. jQuery 之 Callback 实现

    在 js 开发中,由于没有多线程,经常会遇到回调这个概念,比如说,在 ready 函数中注册回调函数,注册元素的事件处理等等.在比较复杂的场景下,当一个事件发生的时候,可能需要同时执行多个回调方法,可 ...

  10. Spring与Mybatis整合的MapperScannerConfigurer处理过程源码分析

    前言 本文将分析mybatis与spring整合的MapperScannerConfigurer的底层原理,之前已经分析过java中实现动态,可以使用jdk自带api和cglib第三方库生成动态代理. ...