bzoj 2763: [JLOI2011]飞行路线 -- 分层图最短路
2763: [JLOI2011]飞行路线
Time Limit: 10 Sec Memory Limit: 128 MB
Description
Input
Output
Sample Input
0 4
0 1 5
1 2 5
2 3 5
3 4 5
2 3 3
0 2 100
Sample Output
HINT
对于30%的数据,2<=n<=50,1<=m<=300,k=0;
对于50%的数据,2<=n<=600,1<=m<=6000,0<=k<=1;
对于100%的数据,2<=n<=10000,1<=m<=50000,0<=k<=10.
Source
将图拆成 k+1 层,第 i 层代表已用了 i 次免费的情况,每层内正常建图,并对于每条线路的两点,从上一层向下一层建一条权值为零的单向边,表示该条线路选择免费,这样保证不可返回上一层,且最多只能走 k 次。
然后直接跑dijkstra
当然这种方法固然可以过,但当 k 值变大又卡内存时,我们就需要另一种建图方式 http://www.cnblogs.com/lkhll/p/6616146.html
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1200010
#define M 2400010
#define pa pair<int,int>
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int cnt,lj[N],fro[M],to[M],v[M];
inline void add(int a,int b,int c){fro[++cnt]=lj[a];to[cnt]=b;v[cnt]=c;lj[a]=cnt;}
int n,m,k,s,t,a,b,c;
int dis[N];
bool vs[N];
void dijkstra()
{
priority_queue<pa,vector<pa>,greater<pa> >q;
memset(dis,,sizeof(dis));
dis[s]=;
int u,et;
q.push(make_pair(,s));
while(!q.empty())
{
u=q.top().second;q.pop();
if(vs[u]) continue;
vs[u]=;
for(int i=lj[u];i;i=fro[i])
{
et=to[i];
if(dis[et]>dis[u]+v[i])
{
dis[et]=dis[u]+v[i];
q.push(make_pair(dis[et],et));
}
}
}
}
int ans=2e9+;
int main()
{
n=read();m=read();k=read();
s=read()+;t=read()+;
for(int i=;i<=m;i++)
{
a=read()+;b=read()+;c=read();
for(int j=;j<=k;j++)
{
add(a+j*n,b+j*n,c);
add(b+j*n,a+j*n,c);
if(j!=k)
{
add(a+j*n,b+(j+)*n,);
add(b+j*n,a+(j+)*n,);
}
}
}
dijkstra();
for(int i=;i<=k;i++) ans=min(ans,dis[t+i*n]);
printf("%d\n",ans);
return ;
}
bzoj 2763: [JLOI2011]飞行路线 -- 分层图最短路的更多相关文章
- bzoj 2763 [JLOI2011]飞行路线——分层图
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2763 分层图两种方法的练习. 1.把图分成k+1层,本层去上面一层的边免费.但空间时间都不算 ...
- bzoj 2763: [JLOI2011]飞行路线 分层图
题目链接 n个点m条路, 每条路有权值, 给出起点和终点, 求一条路使得权值最小.可以使路过的路中, k条路的权值忽略. 其实就是多一维, 具体看代码 #include<bits/stdc++ ...
- Bzoj 2763: [JLOI2011]飞行路线 dijkstra,堆,最短路,分层图
2763: [JLOI2011]飞行路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1728 Solved: 649[Submit][Statu ...
- BZOJ2763[JLOI2011]飞行路线 [分层图最短路]
2763: [JLOI2011]飞行路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2523 Solved: 946[Submit][Statu ...
- BZOJ2763: [JLOI2011]飞行路线(分层图 最短路)
题意 题目链接 Sol 分层图+最短路 建\(k+1\)层图,对于边\((u, v, w)\),首先在本层内连边权为\(w\)的无向边,再各向下一层对应的节点连边权为\(0\)的有向边 如果是取最大最 ...
- [JLOI2011]飞行路线 分层图最短路
题目描述: Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在nn个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一 ...
- P4568 [JLOI2011]飞行路线 分层图最短路
思路:裸的分层图最短路 提交:1次 题解: 如思路 代码: #include<cstdio> #include<iostream> #include<cstring> ...
- 【bzoj2763】[JLOI2011]飞行路线 分层图最短路
题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...
- [JLOI2011]飞行路线 (分层图,最短路)
题目链接 Solution 建立 \(k+1\) 层图跑 \(Dijkstra\) 就好了. Code #include<bits/stdc++.h> #define ll long lo ...
随机推荐
- Mysql储存过程2:变量定义与参数传递
#储存过程 中的变量定义 declare 变量名 类型 可选类型 -- 跟建表差不多 create procedure p() begin ); ; select age+number; end$ / ...
- 利用gcc的__attribute__编译属性section子项构建初始化函数表【转】
转自:https://my.oschina.net/u/180497/blog/177206 gcc的__attribute__编译属性有很多子项,用于改变作用对象的特性.这里讨论section子项的 ...
- 在新版linux上编译老版本的kernel出现kernel/timeconst.h] Error 255
在使用ubuntu16.4编译Linux-2.6.31内核时出现这样的错误 可以修改timeconst.pl的内容后正常编译. 以下是编译错误提示的内容: Can't use 'defined(@ar ...
- iOS 取消按钮高亮显示方法
objective-C 第1种方法: 设置按钮的normal 与 highlighted 一样的图片, 不过如果你也需要selected状态下的图片, 就不能这么做, 这样做在取消选中状态的时候就会显 ...
- python3.X和python2.7的区别
1.python3.X将thread模块修改为_thread
- spring集成swagger
随着互联网技术的发展,现在的网站架构基本都由原来的后端渲染,变成了:前端渲染.前后端分离的形态,而且前端技术和后端技术在各自的道路上越走越远. 前端和后端的唯一联系,变成了API接口:API文档变成了 ...
- 使用非root用户启动tomcat
以下操作均为以root用户运行1.添加tomcat用户组 /usr/sbin/groupadd tomcat 2.添加tomcat用户,并限制登录 /usr/sbin/useradd -s /bin/ ...
- Sublime Text 2.0.2,Build 2221注册码
Help ->Enter License,输入如下序列号: ----- BEGIN LICENSE ----- Andrew Weber Single User License EA7E-855 ...
- Web开发:URL编码与解码
通常如果一样东西需要编码,说明这样东西并不适合传输.原因多种多样,如Size过大,包含隐私数据,对于Url来说,之所以要进行编码,是因为Url中有些字符会引起歧义. 例如Url参数字符串中使用key= ...
- css3 图标变大变小在变小变大
css3 @-webkit-keyframes anLoca { from { -webkit-transform: scale3d(1, 1, 1); } to { -webkit-transfor ...