[BZOJ4555][TJOI2016&HEOI2016]求和(分治FFT)
4555: [Tjoi2016&Heoi2016]求和
Time Limit: 40 Sec Memory Limit: 128 MB
Submit: 525 Solved: 418
[Submit][Status][Discuss]Description
在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。
现在他想计算这样一个函数的值:S(i, j)表示第二类斯特林数,递推公式为:S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1。边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i)你能帮帮他吗?Input
输入只有一个正整数
Output
输出f(n)。由于结果会很大,输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果即可。1 ≤ n ≤ 100000
Sample Input
3Sample Output
87HINT
Source
容易得到递推式,可以用CDQ分治+FFT
[l,mid]和[mid+1,r]卷起来怎么处理呢?平移数组变成[0,mid-l]和[mid-l+1,r-l+1]卷,次数界设为r-l+1即可。
代码用时:1h 比较顺利,没有低级错误。
实现比较简单,11348ms
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=(<<)+,P=,g=;
int n,rev[N];
ll inv[N],fac[N],facinv[N],f[N],a[N],b[N]; ll ksm(ll a,ll b){
ll ans=;
for (; b; b>>=,a=a*a%P)
if (b & ) ans=ans*a%P;
return ans;
} void DFT(ll a[],int n,int f){
rep(i,,n-) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=; i<n; i<<=){
int wn=ksm(g,(f==) ? (P-)/(i<<) : (P-)-(P-)/(i<<));
for (int p=i<<,j=; j<n; j+=p){
int w=;
for (int k=; k<i; k++,w=1ll*w*wn%P){
int x=a[j+k],y=1ll*w*a[i+j+k]%P;
a[j+k]=(x+y)%P; a[i+j+k]=(x-y+P)%P;
}
}
}
if (f==-){
int inv=ksm(n,P-);
rep(i,,n-) a[i]=1ll*a[i]*inv%P;
}
} void cdq(int l,int r){
if (l==r) return;
int mid=(l+r)>>,lim=r-l+,n=,L=;
cdq(l,mid);
while (n<lim) n<<=,L++;
rep(i,,n-) rev[i]=(rev[i>>]>>)|((i&)<<(L-));
rep(i,,n-) a[i]=b[i]=;
rep(i,l,mid) a[i-l]=f[i];
rep(i,,r-l) b[i]=facinv[i];
DFT(a,n,); DFT(b,n,);
rep(i,,n-) a[i]=a[i]*b[i]%P;
DFT(a,n,-);
rep(i,mid+,r) f[i]=(f[i]+*a[i-l])%P;
cdq(mid+,r);
} int main(){
freopen("bzoj4555.in","r",stdin);
freopen("bzoj4555.out","w",stdout);
scanf("%d",&n); inv[]=; fac[]=facinv[]=;
rep(i,,n){
if (i!=) inv[i]=(P-P/i)*inv[P%i]%P;
fac[i]=fac[i-]*i%P;
facinv[i]=facinv[i-]*inv[i]%P;
}
f[]=; cdq(,n); ll ans=;
rep(i,,n) ans=(ans+f[i]*fac[i]%P)%P;
if (ans<) ans+=P;
printf("%lld\n",ans);
return ;
}
[BZOJ4555][TJOI2016&HEOI2016]求和(分治FFT)的更多相关文章
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- [BZOJ4555 TJOI2016 HEOI2016 求和]
第一篇博客,请大家多多关照.(鞠躬 BZOJ4555 TJOI2016 HEOI2016 求和 题意: 给定一个正整数\(n\)(\(1\leqq n \leqq100000\)),求: \[ ...
- BZOJ 4555 [Tjoi2016&Heoi2016]求和 ——分治 NTT 多项式求逆
不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #in ...
- Bzoj4555: [Tjoi2016&Heoi2016]求和
题面 Bzoj Sol 推柿子 因为当\(j>i\)时\(S(i, j)=0\),所以有 \[\sum_{i=0}^{n}\sum_{j=0}^{n}S(i, j)2^j(j!)\] 枚举\(j ...
- BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】
题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...
- 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT
[题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 【BZOJ 4555】 4555: [Tjoi2016&Heoi2016]求和 (NTT)
4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 315 Solved: 252 Des ...
- bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化
[Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 679 Solved: 534[Submit][S ...
随机推荐
- [SCOI2010]生成字符串 题解(卡特兰数的扩展)
[SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...
- python小爬虫练手
一个人无聊,写了个小爬虫爬取不可描述图片.... 代码太短,就暂时先往这里贴一下做备份吧. 注:这是很严肃的技术研究,当然爬下来的图片我会带着批判性的眼光审查一遍的.... :) #! /usr/ ...
- 如何在移动端app中应用字体图标icon fonts
How to use icon fonts in your mobile apps 在任何APP设计中实现可图形的矢量缩放最完美的方式是使用字体图标. 移动端的设计变的越来越复杂.原因在于多样的屏幕尺 ...
- 面试中关于Redis的问题看这篇就够了
昨天写了一篇自己搭建redis集群并在自己项目中使用的文章,今天早上看别人写的面经发现redis在面试中还是比较常问的(笔主主Java方向).所以查阅官方文档以及他人造好的轮子,总结了一些redis面 ...
- 如何把一篇Word文档里的所有换行符去掉?
编辑-查找,查找框输入 ^13替换框不输入点击全部替换
- Django 1.10中文文档-第一个应用Part7-自定义管理站点
开发第一个Django应用,Part7 本教程上接Part6.将继续完成这个投票应用,本节将着重讲解如果用Django自动生成后台管理网站. 自定义管理表单 通过admin.site.register ...
- python之supervisor进程管理工具
supervisor是python写的一个管理进程运行的工具,可以很方便的监听.启动.停止.重启一个或多个进程:有了supervisor后,就不用字节写启动和监听的shell脚本了,非常方便. sup ...
- 前端nginx时,让后端tomcat记录真实IP【转】
对于nginx+tomcat这种架构,如果后端tomcat配置保持默认,那么tomcat的访问日志里,记录的就是前端nginx的IP地址,而不是真实的访问IP.因此,需要对nginx.tomcat做如 ...
- 调用HTMLTestRunner生产的报告内容为空解决办法
开始代码如下,生成报告内容为空: #coding=utf-8 import unittest,time,reimport requestsimport jsonimport HTMLTestRunne ...
- 一个设置为display:none;的div,在用.height()方法获取不到它的高,获取到的高度为0.
<div style="width:100px;height:100px;background:red;visibility:hidden"></div>/ ...