4555: [Tjoi2016&Heoi2016]求和

Time Limit: 40 Sec  Memory Limit: 128 MB
Submit: 525  Solved: 418
[Submit][Status][Discuss]

Description

在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。

现在他想计算这样一个函数的值:
S(i, j)表示第二类斯特林数,递推公式为:
S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1。
边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i)
你能帮帮他吗?

Input

输入只有一个正整数

Output

输出f(n)。由于结果会很大,输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果即可。1 ≤ n ≤ 100000

Sample Input

3

Sample Output

87

HINT

Source

容易得到递推式,可以用CDQ分治+FFT

[l,mid]和[mid+1,r]卷起来怎么处理呢?平移数组变成[0,mid-l]和[mid-l+1,r-l+1]卷,次数界设为r-l+1即可。

代码用时:1h 比较顺利,没有低级错误。

实现比较简单,11348ms

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=(<<)+,P=,g=;
int n,rev[N];
ll inv[N],fac[N],facinv[N],f[N],a[N],b[N]; ll ksm(ll a,ll b){
ll ans=;
for (; b; b>>=,a=a*a%P)
if (b & ) ans=ans*a%P;
return ans;
} void DFT(ll a[],int n,int f){
rep(i,,n-) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=; i<n; i<<=){
int wn=ksm(g,(f==) ? (P-)/(i<<) : (P-)-(P-)/(i<<));
for (int p=i<<,j=; j<n; j+=p){
int w=;
for (int k=; k<i; k++,w=1ll*w*wn%P){
int x=a[j+k],y=1ll*w*a[i+j+k]%P;
a[j+k]=(x+y)%P; a[i+j+k]=(x-y+P)%P;
}
}
}
if (f==-){
int inv=ksm(n,P-);
rep(i,,n-) a[i]=1ll*a[i]*inv%P;
}
} void cdq(int l,int r){
if (l==r) return;
int mid=(l+r)>>,lim=r-l+,n=,L=;
cdq(l,mid);
while (n<lim) n<<=,L++;
rep(i,,n-) rev[i]=(rev[i>>]>>)|((i&)<<(L-));
rep(i,,n-) a[i]=b[i]=;
rep(i,l,mid) a[i-l]=f[i];
rep(i,,r-l) b[i]=facinv[i];
DFT(a,n,); DFT(b,n,);
rep(i,,n-) a[i]=a[i]*b[i]%P;
DFT(a,n,-);
rep(i,mid+,r) f[i]=(f[i]+*a[i-l])%P;
cdq(mid+,r);
} int main(){
freopen("bzoj4555.in","r",stdin);
freopen("bzoj4555.out","w",stdout);
scanf("%d",&n); inv[]=; fac[]=facinv[]=;
rep(i,,n){
if (i!=) inv[i]=(P-P/i)*inv[P%i]%P;
fac[i]=fac[i-]*i%P;
facinv[i]=facinv[i-]*inv[i]%P;
}
f[]=; cdq(,n); ll ans=;
rep(i,,n) ans=(ans+f[i]*fac[i]%P)%P;
if (ans<) ans+=P;
printf("%lld\n",ans);
return ;
}

[BZOJ4555][TJOI2016&HEOI2016]求和(分治FFT)的更多相关文章

  1. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  2. [BZOJ4555 TJOI2016 HEOI2016 求和]

    ​ 第一篇博客,请大家多多关照.(鞠躬 BZOJ4555 TJOI2016 HEOI2016 求和 题意: ​ 给定一个正整数\(n\)(\(1\leqq n \leqq100000\)),求: \[ ...

  3. BZOJ 4555 [Tjoi2016&Heoi2016]求和 ——分治 NTT 多项式求逆

    不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #in ...

  4. Bzoj4555: [Tjoi2016&Heoi2016]求和

    题面 Bzoj Sol 推柿子 因为当\(j>i\)时\(S(i, j)=0\),所以有 \[\sum_{i=0}^{n}\sum_{j=0}^{n}S(i, j)2^j(j!)\] 枚举\(j ...

  5. BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】

    题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...

  6. 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT

    [题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...

  7. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  8. 【BZOJ 4555】 4555: [Tjoi2016&Heoi2016]求和 (NTT)

    4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 315  Solved: 252 Des ...

  9. bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化

    [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 679  Solved: 534[Submit][S ...

随机推荐

  1. TensorFlow下利用MNIST训练模型识别手写数字

    本文将参考TensorFlow中文社区官方文档使用mnist数据集训练一个多层卷积神经网络(LeNet5网络),并利用所训练的模型识别自己手写数字. 训练MNIST数据集,并保存训练模型 # Pyth ...

  2. Tomcat参数调优包括日志、线程数、内存【转】

    [Tomcat中日志打印对性能测试的影响] 一般都提供了这样5个日志级别: ▪ Debug ▪ Info ▪ Warn ▪ Error ▪ Fatal 由于性能测试需要并发进行压力测试,如果日志级别是 ...

  3. 010 JVM类加载

    转自http://www.importnew.com/23742.html 前言 我们知道我们写的程序经过编译后成为了.class文件,.class文件中描述了类的各种信息,最终都需要加载到虚拟机之后 ...

  4. Python 类的名称空间和组合

    一.Python类的名称空间 class Student(object): School = '北京大学' def __init__(self): pass stu1 = Student() stu1 ...

  5. 升级vs17中的cordova-simulate

    visual studio 17自带的cordova-simulate有一个bug,动态添加的html代码里面如果带有header,会出现js异常导致后面js程序终止执行,这个问题已经给他们提了iss ...

  6. LeetCode818. Race Car

    https://leetcode.com/problems/race-car/description/ Your car starts at position 0 and speed +1 on an ...

  7. MySQL-高并发优化

    一.数据库结构的设计 1.数据行的长度不要超过8020字节,如果超过这个长度的话在物理页中这条数据会占用两行从而造成存储碎片,降低查询效率. 2.能够用数字类型的字段尽量选择数字类型而不用字符串类型的 ...

  8. Linux 用户篇——用户管理的配置文件

    一.用户管理之配置文件的重要性 在Linux系统中,用户账户的相关信息是存放在相关配置文件中.而Linux安全系统的核心是用户账号,用户对系统中各种对象的访问权限取决于他们登录系统时用的账户,并且Li ...

  9. jquery自定义插件-参数化配置多级菜单导航栏插件

    1 自定义菜单导航栏插件的必要性 看图说话,下面是利用自定义的菜单导航栏插件simpleMenu创建的网站导航示例: 插件默认提供的是如上图的导航栏样式,即一二级菜单为横向分布:三四级菜单为纵向分布. ...

  10. mysql函数积累

    group_concat(),手册上说明:该函数返回带有来自一个组的连接的非NULL值的字符串结果.比较抽象,难以理解. 通俗点理解,其实是这样的:group_concat()会计算哪些行属于同一组, ...