问题描述:

一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).

你的任务,就是对于给定的序列,求出最长上升子序列的长度。

解题思路:

1.n^2

如何把这个问题分解成子问题呢?经过分析,发现 “求以ak(k=1, 2, 3…N)为终点的最长上升子序列的长度”是个好的子问题――这里把一个上升子序列中最右边的那个数,称为该子序列的“终点”。虽然这个子问题和原问题形式上并不完全一样,但是只要这N个子问题都解决了,那么这N个子问题的解中,最大的那个就是整个问题的解。

由上所述的子问题只和一个变量相关,就是数字的位置。因此序列中数的位置k 就是“状态”,而状态 k 对应的“值”,就是以ak做为“终点”的最长上升子序列的长度。这个问题的状态一共有N个。状态定义出来后,转移方程就不难想了。假定MaxLen (k)表示以ak做为“终点”的最长上升子序列的长度,那么:

MaxLen (1) = 1

MaxLen (k) = Max { MaxLen (i):1<i < k 且 ai < ak且 k≠1 } + 1

这个状态转移方程的意思就是,MaxLen(k)的值,就是在ak左边,“终点”数值小于ak,且长度最大的那个上升子序列的长度再加1。因为ak左边任何“终点”小于ak的子序列,加上ak后就能形成一个更长的上升子序列。

实际实现的时候,可以不必编写递归函数,因为从 MaxLen(1)就能推算出MaxLen(2),有了MaxLen(1)和MaxLen(2)就能推算出MaxLen(3)……

2.nlogn

最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时。LIS问题可以优化为nlogn的算法。
定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素。
注意d中元素是单调递增的,下面要用到这个性质。
首先len = 1,d[1] = a[1],然后对a[i]:若a[i]>d[len],那么len++,d[len] = a[i];
否则,我们要从d[1]到d[len-1]中找到一个j,满足d[j-1]<a[i]<d[j],则根据D的定义,我们需要更新长度为j的上升子序列的最末元素(使之为最小的)即 d[j] = a[i];
最终答案就是len
利用d的单调性,在查找j的时候可以二分查找,从而时间复杂度为nlogn。最长上升子序列nlogn算法

在川大oj上遇到一道题无法用n^2过于是,各种纠结,最后习得nlogn的算法

最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。n 下面一步一步试着找出它。 我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。 此外,我们用一个变量Len来记录现在最长算到多少了

首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

于是我们知道了LIS的长度为5。

!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。

然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!

另一个大神写的:

最近在做单调队列,发现了最长上升子序列O(nlogn)的求法也有利用单调队列的思想。

最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增子序列。

设dp[i]表示以i为结尾的最长递增子序列的长度,则状态转移方程为:

dp[i] = max{dp[j]+1}, 1<=j<i,a[j]<a[i].

这样简单的复杂度为O(n^2),其实还有更好的方法。

考虑两个数a[x]和a[y],x<y且a[x]<a[y],且dp[x]=dp[y],当a[t]要选择时,到底取哪一个构成最优的呢?显然选取a[x]更有潜力,因为可能存在a[x]<a[z]<a[y],这样a[t]可以获得更优的值。在这里给我们一个启示,当dp[t]一样时,尽量选择更小的a[x].

按dp[t]=k来分类,只需保留dp[t]=k的所有a[t]中的最小值,设d[k]记录这个值,d[k]=min{a[t],dp[t]=k}。

这时注意到d的两个特点(重要):

1. d[k]在计算过程中单调不升;

2. d数组是有序的,d[1]<d[2]<..d[n]。

利用这两个性质,可以很方便的求解:

1. 设当前已求出的最长上升子序列的长度为len(初始时为1),每次读入一个新元素x:

2. 若x>d[len],则直接加入到d的末尾,且len++;(利用性质2)

否则,在d中二分查找,找到第一个比x小的数d[k],并d[k+1]=x,在这里x<=d[k+1]一定成立(性质1,2)。

POJ2533:Longest Ordered Subsequence(模板题)

题目链接:http://poj.org/problem?id=2533

题目解析:

思想在上面已经介绍很清楚了,敲代码的时候注意二分的写法,注意边界问题,第一次写的时候出了很多错误。

代码:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#define eps 1e-9
using namespace std;
int n,len,a[],d[];
int er(int q[],int l,int r,int key)//好好研究二分
{
int mid;
while(l<=r)
{
mid=(l+r)/;
if(q[mid]==key)
{
return mid;
}
else if(q[mid]>key)
{
r=mid-;
}
else l=mid+;
}
return l;
}
int main()
{
int we;
while(scanf("%d",&n)!=EOF)
{
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
len=;
d[len]=a[];
for(int i=; i<=n; i++)
{
if(a[i]>d[len])
{
d[++len]=a[i];
}
else
{
we=er(d,,len,a[i]);
d[we]=a[i];
}
}
printf("%d\n",len);
}
return ;
}

最长上升子序列算法(n^2 及 nlogn) (LIS) POJ2533Longest Ordered Subsequence的更多相关文章

  1. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  2. LCSS最长公共子序列算法

    0.论文基本介绍以及相关内容 分析移动用户位置的相似性,提取移动用户的相似路径在出行路径预测.兴趣区域发现.轨迹聚类.个性化路径推荐等领域具有广泛的应用. 重点:利用移动用户定位数据找到合适轨迹的表示 ...

  3. 【科技】位运算(bitset)优化最长公共子序列算法

    最长公共子序列(LCS)问题 你有两个字符串 \(A,B\),字符集为 \(\Sigma\),求 \(A, B\) 的最长公共子序列. 简单动态规划 首先有一个广为人知的 dp:\(f_{i,j}\) ...

  4. hdu 5748(求解最长上升子序列的两种O(nlogn)姿势)

    Bellovin Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepte ...

  5. poj2533--Longest Ordered Subsequence(dp:最长上升子序列)

    Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 33943   Acc ...

  6. 最长公共子序列(稀疏序列)nlogn解法

    首先这种做法只能针对稀疏序列, 比如这种情况: abc abacabc. 会输出5 ,,,,就比较尴尬, #include<iostream> #include<cstdio> ...

  7. 程序员的算法课(6)-最长公共子序列(LCS)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  8. HDU 1159 Common Subsequence 【最长公共子序列】模板题

    题目链接:https://vjudge.net/contest/124428#problem/A 题目大意:给出两个字符串,求其最长公共子序列的长度. 最长公共子序列算法详解:https://blog ...

  9. HDU 1257 最少拦截系统(最长上升子序列)

    题意: 给定n个数, 然后要求看看有多少对不上升子序列. 分析: 求出最长上升子序列, 那么整个序列中LIS外的数都会在前面找到一个比自己大的数, 所以不上升子序列最多有最长上升子序列个数个. 关于求 ...

随机推荐

  1. python文件编码说明 coding=utf-8

    python 支持3种编码声明,一般常用能见到下面两种 1.# -*- coding: utf-8 -*- 这种写法是为了兼容Emacs的编码声明 2.短一点,但Emacs不能用# coding=ut ...

  2. LRU算法 - LRU Cache

    这个是比较经典的LRU(Least recently used,最近最少使用)算法,算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. 一般应 ...

  3. MyBatis-Spring 使用总结

    说明:Java-based Config. 不是通过 mybatis 的 SqlSessionFactoryBuilder 来创建 SqlSessionFactory ,而是通过 mybatis-sp ...

  4. JAVA中有一个特殊的类: Object

    JAVA中有一个特殊的类: Object.它是JAVA体系中所有类的父类(直接父类或者间接父类). 此类中的方法可以使所的类均继承. 以下介绍的三种方法属于Object: (1) finalize方法 ...

  5. 转载:Struts2支持断点续传下载实现

    转自:http://blog.sina.com.cn/s/blog_667ac0360102eckm.html package com.ipan.core.controller.web.result; ...

  6. linux下解压 tar.bz2

    tar xvfj xxx.tar.bz2 转自: http://www.360doc.com/content/12/0907/16/8006573_234845810.shtml

  7. 使用cordova+Ionic+AngularJs进行Hybird App开发的环境搭建手冊

    一.所需工具 1,JDK:生成 2.安卓SDK开发环境 3,NodeJs:主要使用的还是npm 4,Python开发环境 5.VS 2012(2008,2015也能够,已亲測):安装这个主要是须要一些 ...

  8. 剑指 offer set 20 打印出和为 s 的连续正序序列

    题目 100 可以由 9~16, 或者 18 ~ 22 组成 思路 1. 与 Leetcode Container With Most Water 有些类似, 依然是平移题目. 但这道更加复杂 2. ...

  9. Java Web项目BlogAutoGenerator编写日志1

    使用的数据库是MySQL,所以首先要在MySQL中创建database和表.建立数据库article_db,建立表blog,如下: create database article_db DEFAULT ...

  10. 通过python3学习编码

    简介 今天在写python程序的时候,遇到了编码问题,今天,我准备好好了解一下编码问题 ASCII编码 计算机是美国人发明的,最初只有不超过256字符需要编码,1字节能编码2**8个,所以ASCII编 ...