简单操作

Python-层次聚类-Hierarchical clustering

>>> data = pd.Series(np.random.randn(10),index=[['a','a','a','b','b','c','c','d','d','d'],[1,2,3,1,2,1,2,3,1,2]])
>>> data
a 1 -0.168871
2 0.828841
3 0.786215
b 1 0.506081
2 -2.304898
c 1 0.864875
2 0.183091
d 3 -0.678791
1 -1.241735
2 0.778855
dtype: float64

Hierarchical与DataFrame之间的转换

>>> data.unstack()
1 2 3
a -0.168871 0.828841 0.786215
b 0.506081 -2.304898 NaN
c 0.864875 0.183091 NaN
d -1.241735 0.778855 -0.678791
>>> type(data.unstack())
<class 'pandas.core.frame.DataFrame'>

Merge,join,Concatenate

>>> df2 = pd.DataFrame({'apts':[55000,60000],'cars':[15000,12000]},index=['hangzhou','najing'])
>>> df1 = pd.DataFrame({'apts':[55000,60000],'cars':[20000,30000]},index=['shanghai','beijing'])
>>> df3 = pd.DataFrame({'apts':[55000,60000],'cars':[15000,12000]},index=['guangzhou','chongqing'])
>>> [df1,df2,df3]
[ apts cars
shanghai 55000 20000
beijing 60000 30000, apts cars
hangzhou 55000 15000
najing 60000 12000, apts cars
guangzhou 55000 15000
chongqing 60000 12000]
>>> pd.concat([df1,df2,df3])
apts cars
shanghai 55000 20000
beijing 60000 30000
hangzhou 55000 15000
najing 60000 12000
guangzhou 55000 15000
chongqing 60000 12000
frames = [df1,df2,df3]
>>> result2 = pd.concat(frames,keys=['x','y','z'])
>>> result2
apts cars
x shanghai 55000 20000
beijing 60000 30000
y hangzhou 55000 15000
najing 60000 12000
z guangzhou 55000 15000
chongqing 60000 12000

进行拼接concat

>>> df4 = pd.DataFrame({"salaries":[10000,30000,30000,20000,15000]},index=['suzhou','beijing','shanghai','guanghzou','tianjin'])
>>> result3 = pd.concat([result,df4],axis=1)
>>> result3
apts cars salaries
beijing 60000.0 30000.0 30000.0
chongqing 60000.0 12000.0 NaN
guanghzou NaN NaN 20000.0
guangzhou 55000.0 15000.0 NaN
hangzhou 55000.0 15000.0 NaN
najing 60000.0 12000.0 NaN
shanghai 55000.0 20000.0 30000.0
suzhou NaN NaN 10000.0
tianjin NaN NaN 15000.0

合并两个DataFrame,并且只是交集

>>> result3 = pd.concat([result,df4],axis=1,join='inner')
>>> result3
apts cars salaries
shanghai 55000 20000 30000
beijing 60000 30000 30000

Series和DataFrame一起Concatenate

>>> s1 = pd.Series([60,50],index=['shanghai','beijing'],name='meal')
>>> s1
shanghai 60
beijing 50
Name: meal, dtype: int64
>>> type(s1)
<class 'pandas.core.series.Series'>
>>> df1
apts cars
shanghai 55000 20000
beijing 60000 30000
>>> type(df1)
<class 'pandas.core.frame.DataFrame'>
>>> pd.concat([df1,s1],axis=1)
apts cars meal
shanghai 55000 20000 60
beijing 60000 30000 50
>>>

Series可以使用append进行行添加也可以列添加,但是concat不可以

>>> s2 = pd.Series([18000,12000],index=['apts','cars'],name='xiamen')
>>> s2
apts 18000
cars 12000
Name: xiamen, dtype: int64
>>> df1.append(s2)
apts cars
shanghai 55000 20000
beijing 60000 30000
xiamen 18000 12000
>>> pd.concat([df1,s2],axis=0)
0 apts cars
shanghai NaN 55000.0 20000.0
beijing NaN 60000.0 30000.0
apts 18000.0 NaN NaN
cars 12000.0 NaN NaN
>>> pd.concat([df1,s2],axis=1)
apts cars xiamen
apts NaN NaN 18000.0
beijing 60000.0 30000.0 NaN
cars NaN NaN 12000.0
shanghai 55000.0 20000.0 NaN
>>>

merge合并

>>> df1 = pd.DataFrame({"salaries":[10000,30000,30000,20000,15000],'cities':['suzhou','beijing','shanghai','guanghzou','tianjin']})
>>> df4 = pd.DataFrame({'apts':[55000,60000],'cars':[15000,12000],'cities':['shanghai','beijing']})
>>> result = pd.merge(df1,df4,on='cities') #on表示合并的列
>>> result
cities salaries apts cars
0 beijing 30000 60000 12000
1 shanghai 30000 55000 15000
>>> result = pd.merge(df1,df4,on='cities',how='right')
>>> result
cities salaries apts cars
0 beijing 30000 60000 12000
1 shanghai 30000 55000 15000
>>> result = pd.merge(df1,df4,on='cities',how='left')
>>> result
cities salaries apts cars
0 suzhou 10000 NaN NaN
1 beijing 30000 60000.0 12000.0
2 shanghai 30000 55000.0 15000.0
3 guanghzou 20000 NaN NaN
4 tianjin 15000 NaN NaN

python之pandas&&DataFrame(二)的更多相关文章

  1. Python:pandas(二)——pandas函数

    Python:pandas(一) 这一章翻译总结自:pandas官方文档--General functions 空值:pd.NaT.np.nan //判断是否为空 if a is np.nan: .. ...

  2. Python数据分析--Pandas知识点(二)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...

  3. python之pandas&&DataFrame

    1.Series  Series是一个一维数组 pandas会默认从0开始作为Series的index >>> test = pd.Series(['num0','num1','nu ...

  4. Python中pandas dataframe删除一行或一列:drop函数

    用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 参数说明:labels 就是要删除的行列的 ...

  5. Python数据分析--Pandas知识点(三)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...

  6. 【338】Pandas.DataFrame

    Ref: Pandas Tutorial: DataFrames in Python Ref: pandas.DataFrame Ref: Pandas:DataFrame对象的基础操作 Ref: C ...

  7. Python 学习 第十二篇:pandas

    pandas是基于NumPy构建的模块,含有使数据分析更快更简单的操作工具和数据结构,最常用的数据结构是:序列Series和数据框DataFrame,Series类似于numpy中的一维数组,类似于关 ...

  8. Python之Pandas中Series、DataFrame

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  9. Python常用库之二:Pandas

    Pandas是用于数据操纵和分析,建立在Numpy之上的.Pandas为Python带来了两种新的数据结构:Pandas Series和Pandas DataFrame,借助这两种数据结构,我们能够轻 ...

随机推荐

  1. 【SYZOJ279】滑稽♂树(树套树)

    [SYZOJ279]滑稽♂树(树套树) 题面 SYZOJ CJOJ 题目描述 zzsyz实验楼里面种了一棵滑稽树,只有滑稽之力达到大乘期的oier才能看到.虽然我们看不到,但是还是知道一些信息: 这真 ...

  2. 表格隔行变色_jQuery控制实现鼠标悬停高亮

    <!doctype html> <html> <head> <meta http-equiv="content-type" content ...

  3. python实现RSA加解密

    # coding=utf-8 """ @author:Eleven created on:2018年10月30日 """ import bi ...

  4. python基础(3)

    使用list和tuple list Python内置的一种数据类型是列表:list.list是一种有序的集合,可以随时添加和删除其中的元素. 比如,列出班里所有同学的名字,就可以用一个list表示: ...

  5. HikariPool-1 - Connection is not available, request timed out after XXXXms.

    hikaripool-0-连接不可用,请求在30000ms之后超时.意思是池等待30000ms的免费连接,但是您的应用程序没有返回任何连接. 原因一:连接泄漏(在从池中借用之后连接没有关闭).解决方法 ...

  6. [CodeVs3196]黄金宝藏(DP/极大极小搜索)

    题目大意:给出n(≤500)个数,两个人轮流取数,每次可以从数列左边或者右边取一个数,直到所有的数被取完,两个人都以最优策略取数,求最后两人所得分数. 显然这种类型的博弈题,第一眼就是极大极小搜索+记 ...

  7. Linux基础------文件打包解包---tar命令,文件压缩解压---命令gzip,vim编辑器创建和编辑正文件,磁盘分区/格式化,软/硬链接

    作业一:1) 将用户信息数据库文件和组信息数据库文件纵向合并为一个文件/1.txt(覆盖) cat /etc/passwd /etc/group > /1.txt2) 将用户信息数据库文件和用户 ...

  8. hibernate实现数据实体复制保存

    hibernate实现数据实体复制保存 2013年12月16日 11:57:22 Hardy008 阅读数:3474   描述:需要将数据的一条记录进行复制保存为一条新记录. 思路:从数据库中取得一条 ...

  9. Calculating and saving space in PostgreSQL

    Q: I have a table in pg like so: CREATE TABLE t ( a BIGSERIAL NOT NULL, -- 8 b b SMALLINT, -- 2 b c ...

  10. 【OpenCV】SIFT原理与源码分析:关键点描述

    <SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<方向赋值>,为找到的关键点即SI ...