During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
 
Output
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00 70.00

思路:这个思路提示的很直接了,树的性质就是只要加边就会成环,减去这环上的任意边还是一棵联通的树,

跑出一棵最小生成树来,对任意两点试着加花费为0的边.取消掉花费最大的那条边,找到最优答案即可,因为不能每次建边都跑环,所以生成树时预处理

最小生成树的任意联通部分还是最小生成树

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn=1105;
int n;
struct P{
int x,y,p;
}v[maxn];
double d[maxn][maxn];
bool vis[maxn];
double maxd[maxn][maxn];
typedef pair<int ,int > point;
typedef pair<double,point> pr; priority_queue<pr,vector<pr>,greater<pr> >que;
double prim(){//最小生成树
memset(vis,0,sizeof(vis));
vis[0]=true;
int num=1;
while(!que.empty())que.pop();
double ans=0;
for(int i=1;i<n;i++){
que.push(pr(d[0][i],point(i,0)));
}
while(num<n){
double td=que.top().first;
int t=que.top().second.first;
int f=que.top().second.second;
que.pop();
if(vis[t])continue; vis[t]=true;num++;ans+=td; maxd[t][f]=maxd[f][t]=td; for(int i=0;i<n;i++){
if(!vis[i]){
que.push(pr(d[t][i],point(i,t)));
}
else {
if(i!=t){
maxd[t][i]=maxd[i][t]=max(maxd[f][i],td);//此边就是联系当前边到树中所有边的目前最大边
}
}
}
} return ans;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d%d%d",&v[i].x,&v[i].y,&v[i].p);
}
for(int i=0;i<n;i++){//建图
for(int j=0;j<=i;j++){
d[i][j]=d[j][i]=sqrt((v[i].x-v[j].x)*(v[i].x-v[j].x)+(v[i].y-v[j].y)*(v[i].y-v[j].y));
}
}
double allt=prim();
double maxrate=-1;
for(int i=0;i<n;i++){//求最优解
for(int j=0;j<i;j++){
double rate=(v[i].p+v[j].p)/(allt-maxd[i][j]);
maxrate=max(maxrate,rate);
}
}
printf("%.2f\n",maxrate);
}
return 0;
}

  

hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1的更多相关文章

  1. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  2. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  3. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  4. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  5. HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  6. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

  7. HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...

  8. HDU 4081 Qin Shi Huang's National Road System [次小生成树]

    题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...

  9. hdu 4081 Qin Shi Huang's National Road System(最小生成树+dp)2011 Asia Beijing Regional Contest

    同样是看别人题解才明白的 题目大意—— 话说秦始皇统一六国之后,打算修路.他要用n-1条路,将n个城市连接起来,并且使这n-1条路的距离之和最短.最小生成树是不是?不对,还有呢.接着,一个自称徐福的游 ...

随机推荐

  1. 虚拟机Linux系统忘记密码的情况下,修改root或其他用户密码

    使用场景 linux管理员忘记root密码,需要进行找回操作. 注意事项:本文基于centos7环境进行操作,由于centos的版本是有差异的,继续之前请确定好版本. 步骤 一.重启系统,在开机过程中 ...

  2. CIFAR和SVHN在各CNN论文中的结果

    CIFAR和SVHN结果 加粗表示原论文中该网络的最优结果. 可以看出DenseNet-BC优于ResNeXt优于DenseNet优于WRN优于FractalNet优于ResNetv2优于ResNet ...

  3. tensorboard实现训练的可视化

    tensorboard是tensorflow自带的可视化工具 输入命令可以启动tensorboard服务. tensorboard --logdir=your log dir 通过浏览器localho ...

  4. Spring Boot+BootStrap fileInput 多图片上传

    一.依赖文件 <link rel="stylesheet" type="text/css" th:href="@{/js/bootstrap/c ...

  5. Python学习示例源码

    函数和函数式编程 函数定义: 函数调用: 过程定义: 过程调用: 面向过程的编程方法: """ 面向对象-----类------class 面向过程-----过程---- ...

  6. linux中uptime命令获取主机运行时间和查询系统负载信息

    系统中的uptime命令主要用于获取主机运行时间和查询linux系统负载等信息.uptime命令可以显示系统已经运行了多长时间,信息显示依次为:现在时间.系统已经运行了多长时间.目前有多少登陆用户.系 ...

  7. weblogic控制台部署web项目图解

    图解网址:http://jingyan.baidu.com/article/c74d6000650d470f6b595d72.html

  8. RenderScript多输入参数

    https://stackoverflow.com/questions/20783830/how-to-use-renderscript-with-multiple-input-allocations ...

  9. MVC分层处理

    MVC和三层其实是八竿子打不着的,MVC是一种全新的开发方式,传统的三层,其实是模块划分,为了结构清晰.而MVC就是MVC,是通过URL路由到控制器,然后到模型,处理完数据然后将结果返回给视图.是与三 ...

  10. 【前端】javascript中10常用的个小技巧总结

    javascript中10常用的个小技巧总结 本文转自:http://www.cnblogs.com/libin-1/p/6756393.html 1. new Set() 可能有人知道ES6中提供了 ...