During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
 
Output
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00 70.00

思路:这个思路提示的很直接了,树的性质就是只要加边就会成环,减去这环上的任意边还是一棵联通的树,

跑出一棵最小生成树来,对任意两点试着加花费为0的边.取消掉花费最大的那条边,找到最优答案即可,因为不能每次建边都跑环,所以生成树时预处理

最小生成树的任意联通部分还是最小生成树

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn=1105;
int n;
struct P{
int x,y,p;
}v[maxn];
double d[maxn][maxn];
bool vis[maxn];
double maxd[maxn][maxn];
typedef pair<int ,int > point;
typedef pair<double,point> pr; priority_queue<pr,vector<pr>,greater<pr> >que;
double prim(){//最小生成树
memset(vis,0,sizeof(vis));
vis[0]=true;
int num=1;
while(!que.empty())que.pop();
double ans=0;
for(int i=1;i<n;i++){
que.push(pr(d[0][i],point(i,0)));
}
while(num<n){
double td=que.top().first;
int t=que.top().second.first;
int f=que.top().second.second;
que.pop();
if(vis[t])continue; vis[t]=true;num++;ans+=td; maxd[t][f]=maxd[f][t]=td; for(int i=0;i<n;i++){
if(!vis[i]){
que.push(pr(d[t][i],point(i,t)));
}
else {
if(i!=t){
maxd[t][i]=maxd[i][t]=max(maxd[f][i],td);//此边就是联系当前边到树中所有边的目前最大边
}
}
}
} return ans;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d%d%d",&v[i].x,&v[i].y,&v[i].p);
}
for(int i=0;i<n;i++){//建图
for(int j=0;j<=i;j++){
d[i][j]=d[j][i]=sqrt((v[i].x-v[j].x)*(v[i].x-v[j].x)+(v[i].y-v[j].y)*(v[i].y-v[j].y));
}
}
double allt=prim();
double maxrate=-1;
for(int i=0;i<n;i++){//求最优解
for(int j=0;j<i;j++){
double rate=(v[i].p+v[j].p)/(allt-maxd[i][j]);
maxrate=max(maxrate,rate);
}
}
printf("%.2f\n",maxrate);
}
return 0;
}

  

hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1的更多相关文章

  1. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  2. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  3. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  4. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  5. HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  6. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

  7. HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...

  8. HDU 4081 Qin Shi Huang's National Road System [次小生成树]

    题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...

  9. hdu 4081 Qin Shi Huang's National Road System(最小生成树+dp)2011 Asia Beijing Regional Contest

    同样是看别人题解才明白的 题目大意—— 话说秦始皇统一六国之后,打算修路.他要用n-1条路,将n个城市连接起来,并且使这n-1条路的距离之和最短.最小生成树是不是?不对,还有呢.接着,一个自称徐福的游 ...

随机推荐

  1. FileOutputStream写出数据实现换行和追加写入

    FileOutputStream fos = fos = new FileOutputStream(Utils.getData(bizCtx,"strcat(getenv(HWORKDIR) ...

  2. iOS 自动订阅开发

    一.代码逻辑 关于iOS 订阅.自动订阅 本身功能开发很简单.跟正常的购买没什么大的差异.唯一需要特殊处理(自动订阅)的是, 在APP启动时候要增加侦听: [[SKPaymentQueue defau ...

  3. php与js 编码解码交互

    javascript: var  fontcolorEncode=encodeURIComponent(fontcolor.value);  //编码 php: $fontcolordecode= u ...

  4. 实现类似mysql group_concat的功能

    实现类似mysql group_concat的功能 SELECT SG.Id ,SG.GroupName ,HostNames = STUFF((SELECT ',' + SH.[HostName] ...

  5. jQuery :gt 选择器 jQuery :lt 选择器

    选择前 3 个之后的所有 <tr> 元素: $("tr:gt(2)"); 选择前 2 个 <tr> 元素: $("tr:lt(2)");

  6. Spring七大框架

    Spring Core:最基础部分,提供IOC和依赖注入.基础概念是BeanFactory,提供对Factory模式的经典实现,这样来消除对程序性单例模式的需要,并真正地允许你从程序逻辑中分离出依赖关 ...

  7. java语言基本环境搭建

    从放假开始,就开始路陆陆续续了解关于java语言的学习.首先从语言编辑环境就和以前学习的c语言会有些不同,对java语言的学习也有了很大很多新的认识. 首先从官网上下载jdk,按照娄老师给我们的操作提 ...

  8. java第四周学习总结

    学号20145336 <Java程序设计>第4周学习总结 教材学习内容总结 继承 继承符合(Don't Repeat Yourself)原则,即在自己的代码中不要重复自己编写的信息,这在多 ...

  9. Linux系统调用怎么和内核或底层驱动交互的

    学习Linux系统下驱动程序开发已有大半年时间,心中一直有个疑惑:那就是诸如open.write.read等系统调用是怎么和内核或底层驱动建立起联系的呢?今天将自己的一些粗略的理解总结如下.      ...

  10. Mac Book Air 上用 Vmware Fusion 8 pro 安装 CentOS7

    一. 准备工作: 1. 安装Vmware Fusion (略) 2. 下载CentOS-7-x86_64-Minimal http://isoredirect.centos.org/centos/7/ ...