hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
思路:这个思路提示的很直接了,树的性质就是只要加边就会成环,减去这环上的任意边还是一棵联通的树,
跑出一棵最小生成树来,对任意两点试着加花费为0的边.取消掉花费最大的那条边,找到最优答案即可,因为不能每次建边都跑环,所以生成树时预处理
最小生成树的任意联通部分还是最小生成树
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn=1105;
int n;
struct P{
int x,y,p;
}v[maxn];
double d[maxn][maxn];
bool vis[maxn];
double maxd[maxn][maxn];
typedef pair<int ,int > point;
typedef pair<double,point> pr; priority_queue<pr,vector<pr>,greater<pr> >que;
double prim(){//最小生成树
memset(vis,0,sizeof(vis));
vis[0]=true;
int num=1;
while(!que.empty())que.pop();
double ans=0;
for(int i=1;i<n;i++){
que.push(pr(d[0][i],point(i,0)));
}
while(num<n){
double td=que.top().first;
int t=que.top().second.first;
int f=que.top().second.second;
que.pop();
if(vis[t])continue; vis[t]=true;num++;ans+=td; maxd[t][f]=maxd[f][t]=td; for(int i=0;i<n;i++){
if(!vis[i]){
que.push(pr(d[t][i],point(i,t)));
}
else {
if(i!=t){
maxd[t][i]=maxd[i][t]=max(maxd[f][i],td);//此边就是联系当前边到树中所有边的目前最大边
}
}
}
} return ans;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d%d%d",&v[i].x,&v[i].y,&v[i].p);
}
for(int i=0;i<n;i++){//建图
for(int j=0;j<=i;j++){
d[i][j]=d[j][i]=sqrt((v[i].x-v[j].x)*(v[i].x-v[j].x)+(v[i].y-v[j].y)*(v[i].y-v[j].y));
}
}
double allt=prim();
double maxrate=-1;
for(int i=0;i<n;i++){//求最优解
for(int j=0;j<i;j++){
double rate=(v[i].p+v[j].p)/(allt-maxd[i][j]);
maxrate=max(maxrate,rate);
}
}
printf("%.2f\n",maxrate);
}
return 0;
}
hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1的更多相关文章
- HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...
- HDU 4081 Qin Shi Huang's National Road System 次小生成树变种
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)
题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...
- HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...
- HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...
- HDU 4081 Qin Shi Huang's National Road System [次小生成树]
题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...
- hdu 4081 Qin Shi Huang's National Road System(最小生成树+dp)2011 Asia Beijing Regional Contest
同样是看别人题解才明白的 题目大意—— 话说秦始皇统一六国之后,打算修路.他要用n-1条路,将n个城市连接起来,并且使这n-1条路的距离之和最短.最小生成树是不是?不对,还有呢.接着,一个自称徐福的游 ...
随机推荐
- MyBatisPartA
(正在补充) 1.从第一个程序开始,通过mybatis实现数据库表内容的增删改查 (源码zip包) 1.0准备工作 建数据库mybatis,在其中创建表sql语句如下: ; -- ---------- ...
- ubuntu 可能的依赖包,安装过程中根据需要安装
/*************依赖包安装****************/下面是可能的依赖包,安装过程中根据需要安装 build-essential - libglib2.-dev libpng3 li ...
- Winter-2-STL-D The Blocks Problem 解题报告及测试数据
Time Limit:3000MS Memory Limit:0KB Description Background Many areas of Computer Science use sim ...
- 一个辅助AWVS C段扫描的小php脚本
小菜写的小脚本,大牛轻拍砖~~~~~~ 渗透前信息收集时喜欢用椰树来获取旁站及二级域名,然后根据二级.三级域名地址扩展C段,扩大扫描业务边界.例如 以联想为例 但,各个旁站对应IP可能不同,或有CDN ...
- 谷歌技术"三宝"之BigTable(转)
原文地址: http://blog.csdn.net/opennaive/article/details/7532589 2006年的OSDI有两篇google的论文,分别是BigTable和Ch ...
- XML常用标签的介绍
1.引言 在使用Java时经常遇到使用XML的情况,而因为对XML不太了解,经常配置时粘贴复制,现在对它进行总结,以备以后使用. 2.XML常见的定义 (1)XML(Extensible Markup ...
- Mybatis 一对多 简单映射配置
只需在一对多的 “一” Model中定义一个list集合: public class SelectQuestion{ // 主键ID private Integer id; private Strin ...
- Java实习一
简单的二元一次方程求解 import java.lang.Math; import java.util.Scanner; public class Solve{ public static void ...
- Python基础笔记系列十一:标准输入输出、文件读写和指针等操作
本系列教程供个人学习笔记使用,如果您要浏览可能需要其它编程语言基础(如C语言),why?因为我写得烂啊,只有我自己看得懂!! 标准输入输出一.输入 在sublime中这个时候需要安装SublimeRE ...
- Interleaving String,交叉字符串,动态规划
问题描述: Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. For example,Give ...