A Corrupt Mayor's Performance Art
Because a lot of people praised mayor X's painting(of course, X
was a mayor), mayor X believed more and more that he was a very talented
painter. Soon mayor X was not satisfied with only making money. He
wanted to be a famous painter. So he joined the local painting
associates. Other painters had to elect him as the chairman of the
associates. Then his painting sold at better price.
The local middle school from which mayor X graduated, wanted to
beat mayor X's horse fart(In Chinese English, beating one's horse fart
means flattering one hard). They built a wall, and invited mayor X to
paint on it. Mayor X was very happy. But he really had no idea about
what to paint because he could only paint very abstract paintings which
nobody really understand. Mayor X's secretary suggested that he could
make this thing not only a painting, but also a performance art work.
This was the secretary's idea:
The wall was divided into N segments and the width of each segment
was one cun(cun is a Chinese length unit). All segments were numbered
from 1 to N, from left to right. There were 30 kinds of colors mayor X
could use to paint the wall. They named those colors as color 1, color 2
.... color 30. The wall's original color was color 2. Every time mayor X
would paint some consecutive segments with a certain kind of color, and
he did this for many times. Trying to make his performance art fancy,
mayor X declared that at any moment, if someone asked how many kind of
colors were there on any consecutive segments, he could give the number
immediately without counting.
But mayor X didn't know how to give the right answer. Your friend,
Mr. W was an secret officer of anti-corruption bureau, he helped mayor X
on this problem and gained his trust. Do you know how Mr. Q did this?
For each test case:
The first line contains two integers, N and M ,meaning that the
wall is divided into N segments and there are M operations(0 < N
<= 1,000,000; 0<M<=100,000)
Then M lines follow, each representing an operation. There are two kinds of operations, as described below:
1) P a b c
a, b and c are integers. This operation means that mayor X painted
all segments from segment a to segment b with color c ( 0 < a<=b
<= N, 0 < c <= 30).
2) Q a b
a and b are integers. This is a query operation. It means that
someone asked that how many kinds of colors were there from segment a to
segment b ( 0 < a<=b <= N).
Please note that the operations are given in time sequence.
The input ends with M = 0 and N = 0.OutputFor each query operation, print all kinds of color on the
queried segments. For color 1, print 1, for color 2, print 2 ... etc.
And this color sequence must be in ascending order.Sample Input
5 10
P 1 2 3
P 2 3 4
Q 2 3
Q 1 3
P 3 5 4
P 1 2 7
Q 1 3
Q 3 4
P 5 5 8
Q 1 5
0 0
Sample Output
4
3 4
4 7
4
4 7 8 线段树 + 位运算,注释写的很多,因为不是很会线段树,总是写崩,逻辑要搞清楚。32位int正好可以存30种颜色的状态,存在第几个颜色就把第几位变为1. 代码:
///color n 用位移 1 << n来记录
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <stack>
#define lson l,mid,t << 1
#define rson mid + 1,r,t << 1 | 1
using namespace std; int tree[];
int lazy[];///初始为0 表示原来是什么颜色 当更新的区间只占子树一部分时 拆分子树向下更新lazy 无关的区间不受影响,只更新范围内的区间 void build(int l,int r,int t)
{
lazy[] = << ;
tree[t] = << ;///The wall's original color was color 2
if(l == r)return;///线段树的叶节点
int mid = (l + r) >> ;///从中间分成左右子树
build(lson);
build(rson);
}
void update(int L,int R,int col,int l,int r,int t)///更新
{
if(r < L || l > R)return;///无交集
if(l >= L && r <= R)///当前子树处于查询范围内
{
lazy[t] = << col;
tree[t] = << col;
return;
}
if(lazy[t])///当前子树的颜色都是lazy[t] 向下更新 如果值是0,表示左右子树本来就不一致
{
lazy[t << ] = lazy[t << | ] = lazy[t];
tree[t << ] = tree[t << | ] = tree[t];
lazy[t] = ;///当前子树里的颜色已经不是全都一致的了
}
int mid = (l + r) >> ;
update(L,R,col,lson);///当前子树只有左子树需要更新
update(L,R,col,rson);///当前子树只有右子树需要更新 tree[t] = tree[t << ] | tree[t << | ];///向上更新 位或操作合并状态
}
int query(int L,int R,int l,int r,int t)///查询
{
if(l > R || r < L)return ;///不再区间内返回0 表示没颜色
if(l >= L && r <= R || lazy[t])///子树在查询区间内 或者子树状态一致 直接返回
{
return tree[t];
}
int mid = (l + r) >> ;
return query(L,R,lson) | query(L,R,rson);///返回颜色状态的并集
}
int main()
{
int n,m,a,b,c;
char ch[];
while(~scanf("%d%d",&n,&m)&&(n + m))
{
build(,n,);///建树
while(m --)
{
scanf("%s",ch);
if(ch[] == 'P')
{
scanf("%d%d%d",&a,&b,&c);
update(a,b,c,,n,);
}
else
{
scanf("%d%d",&a,&b);
int ans = query(a,b,,n,),flag = ;
for(int i = ;i <= ;i ++)
if((ans >> i) & )
{
if(flag)printf(" %d",i);
else
{
flag = ;
printf("%d",i);
}
}
putchar('\n');
}
}
}
}
A Corrupt Mayor's Performance Art的更多相关文章
- hdu 5023 A Corrupt Mayor's Performance Art 线段树
A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 100000/100 ...
- hdu----(5023)A Corrupt Mayor's Performance Art(线段树区间更新以及区间查询)
A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 100000/100 ...
- A Corrupt Mayor's Performance Art(线段树区间更新+位运算,颜色段种类)
A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 100000/100 ...
- HDU5023:A Corrupt Mayor's Performance Art(线段树区域更新+二进制)
http://acm.hdu.edu.cn/showproblem.php?pid=5023 Problem Description Corrupt governors always find way ...
- ACM学习历程—HDU 5023 A Corrupt Mayor's Performance Art(广州赛区网赛)(线段树)
Problem Description Corrupt governors always find ways to get dirty money. Paint something, then sel ...
- HDU 5023 A Corrupt Mayor's Performance Art 线段树区间更新+状态压缩
Link: http://acm.hdu.edu.cn/showproblem.php?pid=5023 #include <cstdio> #include <cstring&g ...
- HDU 5023 A Corrupt Mayor's Performance Art(线段树区间更新)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5023 解题报告:一面墙长度为n,有N个单元,每个单元编号从1到n,墙的初始的颜色是2,一共有30种颜色 ...
- HDU 5023 A Corrupt Mayor's Performance Art (据说是线段树)
题意:给定一个1-n的墙,然后有两种操作,一种是P l ,r, a 把l-r的墙都染成a这种颜色,另一种是 Q l, r 表示,输出 l-r 区间内的颜色. 析:应该是一个线段树+状态压缩,但是我用s ...
- 2014 网选 广州赛区 hdu 5023 A Corrupt Mayor's Performance Art
#include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #d ...
随机推荐
- 浏览器检测-js
昨天有一同学问我为什么attachEvent在非IE浏览器下不能起作用,我也跟他解释了一番:attachEvent是IE下独有的,只能在IE下使用,其他浏览器下应该用addEventListener来 ...
- mysql数据库优化课程---14、常用的sql技巧
mysql数据库优化课程---14.常用的sql技巧 一.总结 一句话总结:其实就是sql中那些函数的使用 1.mysql中函数如何使用? 选择字段 其实就是作用域select的选择字段 3.转大写: ...
- hadoop2.6.0的eclipse插件安装
1.安装插件 下载插件hadoop-eclipse-plugin-2.6.0.jar并将其放到eclips安装目录->plugins(插件)文件夹下.然后启动eclipse. 配置 hadoop ...
- spring mvc:练习 @RequestParam(参数绑定到控制器)和@PathVariable(参数绑定到url模板变量)
spring mvc:练习 @RequestParam和@PathVariable @RequestParam: 注解将请求参数绑定到你的控制器方法参数 @PathVariable: 注释将一个方法参 ...
- JMeter中响应数据显示乱码问题解决
方法一.UTF-8 路径:JMeter-->bin-->jmeter.properties 打开之后 #sampleresult.default.encoding=ISO-8859-1 改 ...
- DataContext的在控件树上的传递
控件树,在树上的每一个分支,包括叶子(比如:grid,stackpanel,lable,TextBlock)等,都有DataContext属性,并且该值可以实现从“外层”向内层传递 <Grid ...
- dom&bom的起源,方法,内容,应用
Document Object Model的历史可以追溯至1990年代后期微软与Netscape的"浏览器大战"(browser wars),双方为了在JavaScript与JSc ...
- windows使用pip安装selenium报错问题
UnicodeDecodeError: 'ascii' codec can't decode byte 0xb9 in position 7: ordinal not in range(128) 这是 ...
- bzoj3600
题解: 好像是什么替罪羊树 然后看了几个题解 然后就抄了一边 代码: #include<bits/stdc++.h> using namespace std; ; int n,m,rt,R ...
- 【ecmascript】Javascript 严格模式详解【转】
一.概述 除了正常运行模式,ECMAscript 5添加了第二种运行模式:"严格模式"(strict mode).顾名思义,这种模式使得Javascript在更严格的条件下运行. ...