5280: [Usaco2018 Open]Milking Order

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 123  Solved: 62
[Submit][Status][Discuss]

Description

Farmer John的N头奶牛(1≤N≤105),仍然编号为1…N,正好闲得发慌。因此,她们发展了一个与Farmer John每
天早上为她们挤牛奶的时候的排队顺序相关的复杂的社会阶层。经过若干周的研究,Farmer John对他的奶牛的社
会结构总计进行了M次观察(1≤M≤50,000)。每个观察结果都是他的某些奶牛的一个有序序列,表示这些奶牛应
该以与她们在序列中出现的顺序相同的顺序进行挤奶。比方说,如果Farmer John的一次观察结果是序列2、5、1,
Farmer John应该在给奶牛5挤奶之前的某个时刻给奶牛2挤奶,在给奶牛1挤奶之前的某个时刻给奶牛5挤奶。Farme
r John的观察结果是按优先级排列的,所以他的目标是最大化X的值,使得他的挤奶顺序能够符合前X个观察结果描
述的状态。当多种挤奶顺序都能符合前X个状态时,Farmer John相信一个长期以来的传统——编号较小的奶牛的地
位高于编号较大的奶牛,所以他会最先给编号最小的奶牛挤奶。更加正式地说,如果有多个挤奶顺序符合这些状态
,Farmer John会采用字典序最小的那一个。挤奶顺序x的字典序比挤奶顺序y要小,如果对于某个j,xi=yi对所有i
<j成立,并且xj<yj(也就是说,这两个挤奶顺序到某个位置之前都是完全相同的,在这个位置上x比y要小)。请
帮助Farmer John求出为奶牛挤奶的最佳顺序。

Input

第一行包含N和M。
接下来的M行,每行描述了一个观察结果。
第i+1行描述了观察结果i,第一个数是观察结果中的奶牛数量mi,后面是一列mi个整数,给出这次观察中奶牛的顺序。
所有mi的和至多为200,000

Output

输出N个空格分隔的整数,给出一个1…N的排列,为Farmer John给他的奶牛们挤奶应该采用的的顺序。

Sample Input

4 3
3 1 2 3
2 4 2
3 3 4 1

Sample Output

1 4 2 3

这里,Farmer John有四头奶牛,他的挤奶顺序应该是奶牛1在奶牛2之前、奶牛2在奶牛3之前(第一个观察结果)
,奶牛4在奶牛2之前(第二个观察结果),奶牛3在奶牛4之前、奶牛4在奶牛1之前(第三个观察结果)。前两个观
察结果可以同时被满足,但是Farmer John不能同时满足所有的规则,因为这样的话会要求奶牛1在奶牛3之前,同
时奶牛3在奶牛1之前。这意味着总共有两种可能的挤奶顺序:1 4 2 3和4 1 2 3,第一种是字典序较小的。

HINT

Source

思路:一眼题,由于不方便按照顺序加边,然后每次判断是否有环。 由于是最大的前缀边,我们按边数二分然后判断,然后可以tarjan判断环,但是也可以直接拓扑判断同时得到答案,就懒得写tarjan了,因为如果有环,环里的点是拓扑不出来的,最后判断如果没有拓扑完所有的点,说明有环,否则更新答案。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define pb push_back
using namespace std;
const int maxn=;
vector<int>G[maxn]; int res[maxn],ans[maxn],N,M;
int Laxt[maxn],Next[maxn],To[maxn],ind[maxn],cnt,tot;
void add(int u,int v){
Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v; ind[v]++;
}
bool check(int Mid)
{
rep(i,,N) Laxt[i]=,ind[i]=;
priority_queue<int,vector<int>,greater<int> >q; cnt=; tot=;
rep(i,,Mid){
rep(j,,G[i].size()-) add(G[i][j-],G[i][j]);
}
rep(i,,N) if(!ind[i]) q.push(i);
while(!q.empty()){
int u=q.top(); ans[++tot]=u;
q.pop();
for(int i=Laxt[u];i;i=Next[i]){
int v=To[i]; ind[v]--;
if(!ind[v]) q.push(v);
}
}
return tot==N;
}
int main()
{
scanf("%d%d",&N,&M);
rep(i,,M){
int num,x; scanf("%d",&num);
rep(j,,num) scanf("%d",&x),G[i].pb(x);
}
int L=,R=M,Mid;
while(L<=R){
Mid=(L+R)>>;
if(check(Mid)) {
L=Mid+;
rep(i,,N) res[i]=ans[i];
}
else R=Mid-;
}
rep(i,,N) printf("%d ",res[i]);
return ;
}

BZOJ5280: [Usaco2018 Open]Milking Order(二分+拓扑)的更多相关文章

  1. [BZOJ5280] [Usaco2018 Open]Milking Order

    Description Farmer John的N头奶牛(1≤N≤105),仍然编号为1…N,正好闲得发慌.因此,她们发展了一个与Farmer John每 天早上为她们挤牛奶的时候的排队顺序相关的复杂 ...

  2. [Usaco2018 Open]Milking Order

    Description Farmer John的N头奶牛(1≤N≤10^5),仍然编号为1-N,正好闲得发慌.因此,她们发展了一个与Farmer John每天早上为她们挤牛奶的时候的排队顺序相关的复杂 ...

  3. 【二分+拓扑排序】Milking Order @USACO 2018 US Open Contest, Gold/upc_exam_6348

    目录 Milking Order @USACO 2018 US Open Contest, Gold/upc_exam_6348 PROBLEM 题目描述 输入 输出 样例输入 样例输出 提示 MEA ...

  4. Milking Order

    Milking Order 题意:给出m个描述状态,其中包含若干个边的关系,问最多能取x (x<=m)个状态,使得形成的图没有环.就是说取x个状态,用状态中的关系建边,其中不能有环. 题解:最大 ...

  5. codeforces 645 D. Robot Rapping Results Report 二分+拓扑排序

    题目链接 我们可以发现, 这是一个很明显的二分+拓扑排序.... 如何判断根据当前的点, 是否能构造出来一个唯一的拓扑序列呢. 如果有的点没有出现, 那么一定不满足. 如果在加进队列的时候, 同时加了 ...

  6. POJ 2112 Optimal Milking (二分+最短路径+网络流)

    POJ  2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K To ...

  7. CROC 2016 - Elimination Round (Rated Unofficial Edition) D. Robot Rapping Results Report 二分+拓扑排序

    D. Robot Rapping Results Report 题目连接: http://www.codeforces.com/contest/655/problem/D Description Wh ...

  8. POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...

  9. CF #CROC 2016 - Elimination Round D. Robot Rapping Results Report 二分+拓扑排序

    题目链接:http://codeforces.com/contest/655/problem/D 大意是给若干对偏序,问最少需要前多少对关系,可以确定所有的大小关系. 解法是二分答案,利用拓扑排序看是 ...

随机推荐

  1. python学习笔记glob模块

    python有许多的类库,现将学习记录下来,以供以后回顾复习: 1.glob模块 用于文件名操作,匹配指定目录下的文件,返回的是目录加文件名,常用的有两个函数: glob(pattern),返回匹配的 ...

  2. Extjs的form跨域提交文件时,无法获取返回结果

    form文件表单跨域提交时,无法获取远程服务器的返回结果,form提交代码如下: form.submit({ url:'http://{remoteUrl}/hgisserver/wrds/file' ...

  3. iView--3

    项目基本结构 简单介绍目录 build目录是一些webpack的文件,配置参数什么的,一般不用config是vue项目的基本配置文件node_modules是项目中安装的依赖模块src源码文件夹,基本 ...

  4. 使用MessageFormat替换字符中的占位符

    使用String.format可以实现字符串的格式化功能,即将后面参数中的值替换掉format中的%s,%d这些值.但MessageFormat更为强大,不用管传入值是字符串还是数字,使用占位符即可. ...

  5. python一个元素全为数的列表做差分

    woc = [7, 5, 7, 3, 5, 1, 2] diff = [ wo[i]-wo[i+1] for i in range(len(wo)-1) ]

  6. VS2017编译项目出现提示al.exe运行失败的解决方法

    VS2013中编译一切正常,用VS2017打开项目,某个类库出现al.exe运行失败的解决方法,事件查看器中这样描述 “C:\Program Files (x86)\Microsoft SDKs\Wi ...

  7. javascript中的__proto__ 和prototype

    不错的一张图

  8. HDU-5695-拓扑排序+优先队列

    Gym Class Time Limit: 6000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  9. IOS-源代码管理工具(SVN)

    一.使用环境 要想利用SVN管理源代码,必须得有2套环境 服务器 用于存储客户端上传的源代码 可以在Windows上安装Visual SVN Server 大部分情况下,公司的开发人员不必亲自搭建SV ...

  10. webapi返回不带引号的字符串,解决自动加双引号的问题

    返回类型改为HttpResponseMessage类型 [Route("api/TestControllers/test")] [HttpGet] public HttpRespo ...