本文主要介绍及演示一些Redis相关的状态监控和性能调优的命令及使用方法:

1、redis-benchmark

redis基准信息,redis服务器性能检测

例如:

检测redis服务器性能,本机6379端口的实例,100个并发连接,100000个请求

redis-benchmark -h localhost -p  -c  -n  
[root@redis-server ~]# redis-benchmark -h localhost -p  -c  -n
====== PING_INLINE ======
requests completed in 1.29 seconds
parallel clients
bytes payload
keep alive: 81.97% <= milliseconds
97.69% <= milliseconds
99.79% <= milliseconds
99.94% <= milliseconds
99.97% <= milliseconds
100.00% <= milliseconds
77639.75 requests per second ====== PING_BULK ======
requests completed in 1.49 seconds
parallel clients
bytes payload
keep alive: 73.04% <= milliseconds
97.46% <= milliseconds
99.62% <= milliseconds
99.97% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
67204.30 requests per second ====== SET ======
requests completed in 1.30 seconds
parallel clients
bytes payload
keep alive: 81.09% <= milliseconds
97.16% <= milliseconds
99.43% <= milliseconds
99.75% <= milliseconds
99.80% <= milliseconds
99.82% <= milliseconds
99.83% <= milliseconds
99.85% <= milliseconds
99.87% <= milliseconds
99.89% <= milliseconds
99.89% <= milliseconds
99.90% <= milliseconds
99.90% <= milliseconds
99.90% <= milliseconds
99.91% <= milliseconds
99.93% <= milliseconds
99.94% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.98% <= milliseconds
99.99% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
76687.12 requests per second ====== GET ======
requests completed in 1.91 seconds
parallel clients
bytes payload
keep alive: 49.74% <= milliseconds
93.92% <= milliseconds
99.37% <= milliseconds
99.95% <= milliseconds
99.97% <= milliseconds
99.98% <= milliseconds
100.00% <= milliseconds
52273.91 requests per second ====== INCR ======
requests completed in 1.60 seconds
parallel clients
bytes payload
keep alive: 66.32% <= milliseconds
96.55% <= milliseconds
99.61% <= milliseconds
99.96% <= milliseconds
100.00% <= milliseconds
62344.14 requests per second ====== LPUSH ======
requests completed in 1.27 seconds
parallel clients
bytes payload
keep alive: 73.84% <= milliseconds
95.61% <= milliseconds
99.36% <= milliseconds
99.96% <= milliseconds
99.99% <= milliseconds
100.00% <= milliseconds
78492.93 requests per second ====== RPUSH ======
requests completed in 1.31 seconds
parallel clients
bytes payload
keep alive: 80.47% <= milliseconds
96.93% <= milliseconds
99.56% <= milliseconds
99.98% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
76103.50 requests per second ====== LPOP ======
requests completed in 1.30 seconds
parallel clients
bytes payload
keep alive: 74.91% <= milliseconds
95.50% <= milliseconds
99.29% <= milliseconds
99.95% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
77101.00 requests per second ====== RPOP ======
requests completed in 1.40 seconds
parallel clients
bytes payload
keep alive: 77.99% <= milliseconds
97.07% <= milliseconds
99.61% <= milliseconds
99.97% <= milliseconds
99.98% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
71377.59 requests per second ====== SADD ======
requests completed in 1.32 seconds
parallel clients
bytes payload
keep alive: 80.83% <= milliseconds
97.14% <= milliseconds
99.57% <= milliseconds
99.95% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
75757.57 requests per second ====== HSET ======
requests completed in 1.30 seconds
parallel clients
bytes payload
keep alive: 80.25% <= milliseconds
96.83% <= milliseconds
99.49% <= milliseconds
99.97% <= milliseconds
100.00% <= milliseconds
76923.08 requests per second ====== SPOP ======
requests completed in 1.48 seconds
parallel clients
bytes payload
keep alive: 73.97% <= milliseconds
96.91% <= milliseconds
99.55% <= milliseconds
99.96% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
67567.57 requests per second ====== LPUSH (needed to benchmark LRANGE) ======
requests completed in 1.35 seconds
parallel clients
bytes payload
keep alive: 71.03% <= milliseconds
95.36% <= milliseconds
99.29% <= milliseconds
99.97% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
73909.83 requests per second ====== LRANGE_100 (first elements) ======
requests completed in 2.91 seconds
parallel clients
bytes payload
keep alive: 14.30% <= milliseconds
80.30% <= milliseconds
94.42% <= milliseconds
96.88% <= milliseconds
98.34% <= milliseconds
99.39% <= milliseconds
99.78% <= milliseconds
99.93% <= milliseconds
99.97% <= milliseconds
99.98% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
34317.09 requests per second ====== LRANGE_300 (first elements) ======
requests completed in 5.88 seconds
parallel clients
bytes payload
keep alive: 0.00% <= milliseconds
85.83% <= milliseconds
94.17% <= milliseconds
96.10% <= milliseconds
97.90% <= milliseconds
98.68% <= milliseconds
98.70% <= milliseconds
99.30% <= milliseconds
99.49% <= milliseconds
99.76% <= milliseconds
99.79% <= milliseconds
99.83% <= milliseconds
99.85% <= milliseconds
99.87% <= milliseconds
99.89% <= milliseconds
99.91% <= milliseconds
99.92% <= milliseconds
99.93% <= milliseconds
99.94% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.97% <= milliseconds
99.99% <= milliseconds
99.99% <= milliseconds
100.00% <= milliseconds
17006.80 requests per second ====== LRANGE_500 (first elements) ======
requests completed in 8.16 seconds
parallel clients
bytes payload
keep alive: 0.00% <= milliseconds
0.01% <= milliseconds
80.98% <= milliseconds
90.89% <= milliseconds
95.60% <= milliseconds
97.20% <= milliseconds
98.23% <= milliseconds
98.53% <= milliseconds
99.06% <= milliseconds
99.09% <= milliseconds
99.46% <= milliseconds
99.53% <= milliseconds
99.65% <= milliseconds
99.75% <= milliseconds
99.79% <= milliseconds
99.81% <= milliseconds
99.82% <= milliseconds
99.84% <= milliseconds
99.85% <= milliseconds
99.86% <= milliseconds
99.87% <= milliseconds
99.88% <= milliseconds
99.89% <= milliseconds
99.90% <= milliseconds
99.91% <= milliseconds
99.93% <= milliseconds
99.93% <= milliseconds
99.94% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.98% <= milliseconds
99.98% <= milliseconds
99.99% <= milliseconds
99.99% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
12260.91 requests per second ====== LRANGE_600 (first elements) ======
requests completed in 10.15 seconds
parallel clients
bytes payload
keep alive: 0.00% <= milliseconds
0.01% <= milliseconds
84.84% <= milliseconds
93.41% <= milliseconds
96.43% <= milliseconds
97.71% <= milliseconds
97.75% <= milliseconds
98.32% <= milliseconds
98.79% <= milliseconds
99.19% <= milliseconds
99.22% <= milliseconds
99.25% <= milliseconds
99.48% <= milliseconds
99.56% <= milliseconds
99.60% <= milliseconds
99.68% <= milliseconds
99.74% <= milliseconds
99.77% <= milliseconds
99.79% <= milliseconds
99.82% <= milliseconds
99.83% <= milliseconds
99.85% <= milliseconds
99.86% <= milliseconds
99.86% <= milliseconds
99.87% <= milliseconds
99.88% <= milliseconds
99.89% <= milliseconds
99.90% <= milliseconds
99.90% <= milliseconds
99.91% <= milliseconds
99.91% <= milliseconds
99.92% <= milliseconds
99.94% <= milliseconds
99.95% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.96% <= milliseconds
99.96% <= milliseconds
99.97% <= milliseconds
99.98% <= milliseconds
99.98% <= milliseconds
99.99% <= milliseconds
99.99% <= milliseconds
99.99% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
9851.25 requests per second ====== MSET ( keys) ======
requests completed in 1.89 seconds
parallel clients
bytes payload
keep alive: 0.00% <= milliseconds
75.00% <= milliseconds
89.85% <= milliseconds
95.38% <= milliseconds
98.52% <= milliseconds
99.34% <= milliseconds
99.60% <= milliseconds
99.83% <= milliseconds
99.98% <= milliseconds
100.00% <= milliseconds
52994.17 requests per second [root@redis-server ~]#

2、redis-cli

例1:监控本机6379端口的实例的数据操作,redis的连接及读写操作

redis-cli -h localhost -p  monitor 

先开启一个终端1,用于redis监控

[root@redis-server ~]# redis-cli -h localhost -p  monitor
OK
1504689350.635365 [ 127.0.0.1:] "COMMAND"
1504689361.944610 [ 127.0.0.1:] "set" "a" ""
1504689369.782029 [ 127.0.0.1:] "get" "a"

然后在开启一个redis终端2进行操作

[root@redis-server ~]# redis-cli -p
127.0.0.1:> set a
OK
127.0.0.1:> get a
""
127.0.0.1:>

可以看到终端2上面进行的数据操作会在终端1上面被记录下来

例2:查询本机redis实例的信息,端口6379

redis-cli -h localhost -p  info 

备注:该命令也可以在redis终端里面进行查询

[root@redis-server ~]# redis-cli -h localhost -p  info
# Server
redis_version:3.2.
redis_git_sha1:
redis_git_dirty:
redis_build_id:eae5a0b8746eb6ce
redis_mode:standalone
os:Linux 2.6.-.el6.x86_64 x86_64
arch_bits:
multiplexing_api:epoll
gcc_version:4.4.
process_id:
run_id:0057d03b2e908ee036c2aa1c3531e8aa051d7468
tcp_port:
uptime_in_seconds:
uptime_in_days:
hz:
lru_clock:
executable:/usr/local/redis/bin/redis-server
config_file:/usr/local/redis/conf/redis.conf # Clients
connected_clients:
client_longest_output_list:
client_biggest_input_buf:
blocked_clients: # Memory
used_memory:
used_memory_human:1.74M
used_memory_rss:
used_memory_rss_human:3.86M
used_memory_peak:
used_memory_peak_human:8.05M
total_system_memory:
total_system_memory_human:.83G
used_memory_lua:
used_memory_lua_human:.00K
maxmemory:
maxmemory_human:0B
maxmemory_policy:noeviction
mem_fragmentation_ratio:2.22
mem_allocator:jemalloc-4.0. # Persistence
loading:
rdb_changes_since_last_save:
rdb_bgsave_in_progress:
rdb_last_save_time:
rdb_last_bgsave_status:ok
rdb_last_bgsave_time_sec:
rdb_current_bgsave_time_sec:-
aof_enabled:
aof_rewrite_in_progress:
aof_rewrite_scheduled:
aof_last_rewrite_time_sec:-
aof_current_rewrite_time_sec:-
aof_last_bgrewrite_status:ok
aof_last_write_status:ok # Stats
total_connections_received:
total_commands_processed:
instantaneous_ops_per_sec:
total_net_input_bytes:
total_net_output_bytes:
instantaneous_input_kbps:0.00
instantaneous_output_kbps:0.00
rejected_connections:
sync_full:
sync_partial_ok:
sync_partial_err:
expired_keys:
evicted_keys:
keyspace_hits:
keyspace_misses:
pubsub_channels:
pubsub_patterns:
latest_fork_usec:
migrate_cached_sockets: # Replication
role:master
connected_slaves:
master_repl_offset:
repl_backlog_active:
repl_backlog_size:
repl_backlog_first_byte_offset:
repl_backlog_histlen: # CPU
used_cpu_sys:99.45
used_cpu_user:108.88
used_cpu_sys_children:0.01
used_cpu_user_children:0.01 # Cluster
cluster_enabled: # Keyspace
db0:keys=,expires=,avg_ttl=
[root@redis-server ~]#

#  完毕,呵呵呵

redis状态监控与性能调优的更多相关文章

  1. 优化Linux内核参数/etc/sysctl.conf sysctl 《高性能Linux服务器构建实战:运维监控、性能调优与集群应用》

    优化Linux内核参数/etc/sysctl.conf  sysctl  <高性能Linux服务器构建实战:运维监控.性能调优与集群应用> http://book.51cto.com/ar ...

  2. mysql监控、性能调优及三范式理解

    原文:mysql监控.性能调优及三范式理解 1监控 工具:sp on mysql     sp系列可监控各种数据库 2调优 2.1 DB层操作与调优 2.1.1.开启慢查询 在My.cnf文件中添加如 ...

  3. 优化系统资源ulimit《高性能Linux服务器构建实战:运维监控、性能调优与集群应用》

    优化系统资源ulimit<高性能Linux服务器构建实战:运维监控.性能调优与集群应用> 假设有这样一种情况,一台Linux 主机上同时登录了10个用户,在没有限制系统资源的情况下,这10 ...

  4. Redis基础、高级特性与性能调优

    本文将从Redis的基本特性入手,通过讲述Redis的数据结构和主要命令对Redis的基本能力进行直观介绍.之后概览Redis提供的高级能力,并在部署.维护.性能调优等多个方面进行更深入的介绍和指导. ...

  5. Redis 基础、高级特性与性能调优

    本文将从Redis的基本特性入手,通过讲述Redis的数据结构和主要命令对Redis的基本能力进行直观介绍.之后概览Redis提供的高级能力,并在部署.维护.性能调优等多个方面进行更深入的介绍和指导. ...

  6. Redis性能调优

    Redis性能调优 尽管Redis是一个非常快速的内存数据存储媒介,也并不代表Redis不会产生性能问题.前文中提到过,Redis采用单线程模型,所有的命令都是由一个线程串行执行的,所以当某个命令执行 ...

  7. Redis 宝典 | 基础、高级特性与性能调优

    转载:Redis 宝典 | 基础.高级特性与性能调优 本文由 DevOpsDays 本文由简书作者kelgon供稿,高效运维社区致力于陪伴您的职业生涯,与您一起愉快的成长.     作者:kelgon ...

  8. Redis基础与性能调优

    Redis是一个开源的,基于内存的结构化数据存储媒介,可以作为数据库.缓存服务或消息服务使用. Redis支持多种数据结构,包括字符串.哈希表.链表.集合.有序集合.位图.Hyperloglogs等. ...

  9. 性能调优之Java系统级性能监控及优化

    性能调优之Java系统级性能监控及优化   对于性能调优而言,通常我们需要经过以下三个步骤:1,性能监控:2,性能剖析:3,性能调优 性能调优:通过分析影响Application性能问题根源,进行优化 ...

随机推荐

  1. poj_2528 Mayor's posters (线段树经典题+离散化方法)

    由于题面中给定的wall最大长度为10 000 000:若简单用线段树势必会超时. 而注意到题面中规定了输入海报的个数<=1000:因此不妨离散化,使得线段中叶节点仅含有1000个,那么线段最大 ...

  2. Commons FileUpload

    转载自(https://my.oschina.net/u/2000201/blog/486744) 1    概述 Commons FileUpdate包很容易为你的Servlet和web应用程序添加 ...

  3. bzoj1087: [SCOI2005]互不侵犯King (codevs2451) 状压dp

    唔...今天学了状压就练练手... 点我看题 这题的话,我感觉算是入门题了QAQ... 然而我还是想了好久... 大致自己推出了方程,但是一直挂,调了很久选择了题解 坚持不懈的努力的调代码. 然后发现 ...

  4. NOIP2014 T4 子矩阵 dfs+dp

    最近在狂补题啊QAQ... 打算先把NOIP的干掉吧... 点我看题 链接还是放洛谷的了... 题意:给一个n*m的矩阵,在这个矩阵里选 r 行 c 列,然后这 r 行 c 列所相交的格子为新矩阵的, ...

  5. 搭建ODS的几套解决方案对比

    公司业务,想要搭建一个医院的ODS服务器:将医院不同厂家的不同数据库版本数据库类型整到一台服务器中,最初想要是同步数据库原生同步机制,最理想的是sqlserver发布订阅,但是后来发现发布订阅不能发布 ...

  6. ubuntu16.04后续工作

    一.ruijie https://blog.csdn.net/u012217085/article/details/24369335 https://blog.csdn.net/Lv_Victor/a ...

  7. 哥德巴赫猜想-nefu2 & 分拆素数和 hdu2098

    哥德巴赫猜想-nefu2 & 分拆素数和 hdu2098 //哥德巴赫猜想 #include <iostream> #include <cmath> #include ...

  8. Visual Studio 2010 C++ 属性设置基础

    在 <Visual Studio 2010 C++ 工程文件解读>中提到了C++工程中可以进行用户自定义的属性设置,如何进行属性设置呢? 下面我们来了解一下 props 文件的基本规则: ...

  9. C5 标准IO库:APUE 笔记

    C5 :标准IO库 在第三章中,所有IO函数都是围绕文件描述符展开,文件描述符用于后续IO操作.由于文件描述符相关的操作是不带缓冲的IO,需要操作者本人指定缓冲区分配.IO长度等,对设备环境要求一定的 ...

  10. thinkphp3.2.3定时任务 不能获取本模块config, 不能获取本模块的其他配置

    一开始创建就有一个home模块再创建一个Data模块 定时任务在/Application/Common/Conf/crons.php中,这里不讲怎么创建定时任务. Data模块的配置文件路径如下/Ap ...