这道题显然是一道最小生成树的问题,参考算法导论中的Kruskal方法,先对路径长度进行排序,然后使用并查集(Disjoint Set Union)来判断节点是否连通,记录连接所有节点的最后一条路径的长度即为最大的长度了。

下面的并查集算法还可以通过设置rank数组记录节点的等级来进一步优化。总的来说还是一道简单题。

#include <cstdio>
#include <algorithm>
using namespace std; struct Edge{
int x, y;
int dis;
}; int pre[]; int find(int x)
{
int r = x;
while (pre[r] != r){
r = pre[r];
}
int i = x, j;
while (i != r){
j = pre[i];
pre[i] = r;
i = j;
}
return r;
} bool joint(int x, int y)
{
int xRoot = find(x),
yRoot = find(y);
if (xRoot == yRoot)
return false;
pre[xRoot] = yRoot;
return true;
} bool cmp(Edge e1, Edge e2)
{
return e1.dis < e2.dis;
} int main()
{
int t;
scanf("%d", &t);
while (t--){
int n;
Edge edge[];
scanf("%d", &n);
for (int i = ; i < n; i++){
pre[i] = i;
}
int cnt = ;
for (int i = ; i < n; i++){
for (int j = ; j < n; j++){
int dis;
scanf("%d", &dis);
if (i > j)continue;
edge[cnt].x = i;
edge[cnt].y = j;
edge[cnt++].dis = dis;
}
}
sort(edge, edge + cnt, cmp);
int max = -;
for (int i = ; i < cnt; i++){
if (joint(edge[i].x, edge[i].y)){
max = edge[i].dis > max ? edge[i].dis : max;
}
}
printf("%d\n", max);
}
return ;
}

poj2485(Kruskal)的更多相关文章

  1. poj2485 kruskal与prim

    Kruskal: #include<iostream> #include<cstdio> #include<algorithm> using namespace s ...

  2. poj2485&&poj2395 kruskal

    题意:最小生成树的最大边最小,sort从小到大即可 poj2485 #include<stdio.h> #include<string.h> #include<algor ...

  3. Kruskal算法求最小生成树(POJ2485)

    题目链接:http://poj.org/problem?id=2485 #include <iostream> #include <stdio.h> #include < ...

  4. POJ-2485 Highways---最小生成树中最大边

    题目链接: https://vjudge.net/problem/POJ-2485 题目大意: 求最小生成树中的最大边 思路: 是稠密图,用prim更好,但是规模不大,kruskal也可以过 #inc ...

  5. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  6. 最小生成树---Prim算法和Kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

  7. 最小生成树(prim&kruskal)

    最近都是图,为了防止几次记不住,先把自己理解的写下来,有问题继续改.先把算法过程记下来: prime算法:                  原始的加权连通图——————D被选作起点,选与之相连的权值 ...

  8. Kruskal 最小生成树算法

    对于一个给定的连通的无向图 G = (V, E),希望找到一个无回路的子集 T,T 是 E 的子集,它连接了所有的顶点,且其权值之和为最小. 因为 T 无回路且连接所有的顶点,所以它必然是一棵树,称为 ...

  9. 权重最小生成树的思想与Kruskal算法

    晚上做携程的笔试题,附加题考到了权重最小生成树.OMG,就在开考之前,我还又看过一遍这内容,可因为时间太紧,也从来没有写过代码,就GG了.又吃了眼高手低的亏.这不,就好好总结一下,亡羊补牢. 权重最小 ...

随机推荐

  1. JS中client/offset/scroll等的宽高解析

    原文地址:→传送门 window相关宽高属性 1. window.outerHeight (窗口的外层的高度) / window.outerWidth (窗口的外层的宽度) window.outerH ...

  2. Centos7环境下消息队列之ActiveMQ实战

    Activemq介绍 对于消息的传递有两种类型: 一种是点对点的,即一个生产者和一个消费者一一对应: 另一种是发布/订阅模式,即一个生产者产生消息并进行发送后,可以由多个消费者进行接收. JMS定义了 ...

  3. 51Nod - 1006 最长公共子序列Lcs模板

    给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的).   比如两个串为:   abcicba abdkscab   ab是两个串的子序列,abc也是,abca也是,其中abca是这 ...

  4. Oracle笔记之约束

    约束用于保证数据库中某些数据的完整性,给某一列添加一个约束可以保证不满足约束的数据是绝对不会被接受的. 约束主要有那么五种类型:非空约束.唯一约束.主键约束.外键约束.校验约束. 使用如下命令检索某个 ...

  5. hdu 2119 Matrix(二分匹配)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2119 Matrix Time Limit: 5000/1000 MS (Java/Others)    ...

  6. 一款线程安全、基本功能齐全的STL

    MiniSTL 目前正在完成一个STL,主要想通过该项目锻炼C++编程.模板编程.熟悉STL.锻炼数据结构和算法能力. 项目的目标是实现STL的几大构件+线程安全.项目过程中主要参考SGI STL源码 ...

  7. (转)USB体系结构

    转载地址:http://blog.ednchina.com/zenhuateng/203584/Message.aspx USB总线接口层:物理连接.电气信号环境.信息包传输机制:主机一方由USB主控 ...

  8. Java线上应用故障排查之一:高CPU占用【转】

    近期java应用,CPU使用率一直很高,经常达到100%,通过以下步骤完美解决,分享一下. 方法一: 转载:http://www.linuxhot.com/java-cpu-used-high.htm ...

  9. PHP 不让标准浏览器(firfox,chrome等)走浏览器的缓存页面

    或在HTML页面里加: <META HTTP-EQUIV="Cache-Control" CONTENT="no-cache,no-store, must-reva ...

  10. $fhqTreap$

    - $fhqTreap$与$Treap$的差异 $fhqTreap$是$Treap$的非旋版本,可以实现一切$Treap$操作,及区间操作和可持久化 $fhqTreap$非旋关键在于分裂与合并$(Sp ...