Ralph is going to collect mushrooms in the Mushroom Forest.

There are m directed paths connecting n trees in the Mushroom Forest. On each path grow some mushrooms. When Ralph passes a path, he collects all the mushrooms on the path. The Mushroom Forest has a magical fertile ground where mushrooms grow at a fantastic speed. New mushrooms regrow as soon as Ralph finishes mushroom collection on a path. More specifically, after Ralph passes a path the i-th time, there regrow i mushrooms less than there was before this pass. That is, if there is initially x mushrooms on a path, then Ralph will collect x mushrooms for the first time, x - 1 mushrooms the second time, x - 1 - 2 mushrooms the third time, and so on. However, the number of mushrooms can never be less than 0.

For example, let there be 9 mushrooms on a path initially. The number of mushrooms that can be collected from the path is 9, 8, 6 and 3when Ralph passes by from first to fourth time. From the fifth time and later Ralph can't collect any mushrooms from the path (but still can pass it).

Ralph decided to start from the tree s. How many mushrooms can he collect using only described paths?

Input

The first line contains two integers n and m (1 ≤ n ≤ 106, 0 ≤ m ≤ 106), representing the number of trees and the number of directed paths in the Mushroom Forest, respectively.

Each of the following m lines contains three integers xy and w (1 ≤ x, y ≤ n, 0 ≤ w ≤ 108), denoting a path that leads from tree x to tree y with w mushrooms initially. There can be paths that lead from a tree to itself, and multiple paths between the same pair of trees.

The last line contains a single integer s (1 ≤ s ≤ n) — the starting position of Ralph.

Output

Print an integer denoting the maximum number of the mushrooms Ralph can collect during his route.

Examples
input
2 2
1 2 4
2 1 4
1
output
16
input
3 3
1 2 4
2 3 3
1 3 8
1
output
8

先处理环,用Tarjan缩点然后用一个数组记录这个环的贡献值,然后对缩点后的有向无环图做一个最长路。
环的贡献是每条边的贡献之和,可以预处理每次二分得到。
#include <iostream>
#include <cstdio>
#include <stdio.h>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#define INF 0x3f3f3f3f
#define ll long long
#define lowbit(x) (x&(-x))
#define eps 0.00000001
#define pn printf("\n")
#define ms(x,y) memset(x,y,sizeof(x))
using namespace std; const int maxn = 1e6+7; struct edge{
int to, next, w;
}e[maxn];
int tot, head[maxn];
int dfn[maxn], low[maxn], Stack[maxn];
bool inStack[maxn];
int top, Index, scc;
int Belong[maxn]; struct node{
int v;
ll w;
node(int _v=0,ll _w=0):v(_v),w(_w){}
};
vector <node> E[maxn<<1];
ll val[maxn << 1]; ll sub[maxn], pre[maxn];
int arr_cnt; ll binary_search(ll x)
{
ll l = 0, r = arr_cnt, mid;
while(l < r)
{
mid = (l + r) >> 1;
if(sub[mid] > x) r = mid;
else l = mid + 1;
}
return l - 1;
} void init()
{
tot = 0;
memset(head,-1,sizeof head);
for(arr_cnt=1; sub[arr_cnt-1] <= 1e8; arr_cnt++)
pre[arr_cnt] = pre[arr_cnt-1] + (sub[arr_cnt] = sub[arr_cnt-1] + arr_cnt);
} void addedge(int u,int v,int w)
{
e[tot].to = v;
e[tot].w = w;
e[tot].next = head[u];
head[u] = tot++;
} void Tarjan(int u)
{
int v;
dfn[u] = low[u] = ++Index;
Stack[top++] = u;
inStack[u] = 1; for(int i=head[u];i!=-1;i=e[i].next)
{
v = e[i].to;
if(!dfn[v])
{
Tarjan(v);
if(low[v] < low[u]) low[u] = low[v];
}else if(inStack[v] && dfn[v] < low[u])
low[u] = dfn[v];
}
if(low[u] == dfn[u])
{
scc++;
do
{
v = Stack[--top];
inStack[v] = 0;
Belong[v] = scc;
} while(u != v);
}
} void solve(int N)
{
Index = scc = top = 0;
for(int i=1;i<=N;i++)
if(!dfn[i])
Tarjan(i); //Belong[i] -> 新图中的标号
for(int i=1;i<=N;i++)
for(int j=head[i];j!=-1;j=e[j].next)
{
int u = Belong[i];
int v = Belong[e[j].to];
ll w = e[j].w;
if(u == v)
{
ll pos = binary_search(e[j].w);
if(pos >= 0)
{
w = (pos + 1) * w - pre[pos];
val[u] += w;
}
}
else
{
E[u].push_back(node(v,w));
}
}
} ll ans[maxn << 1]; ll dfs(int u)
{
if(ans[u]) return ans[u];
ll ret = 0;
for(int i=0;i<E[u].size();i++)
ret = max(ret, E[u][i].w + dfs(E[u][i].v));
return ans[u] = ret + val[u];
} int main()
{
init();
int n,m;
scanf("%d%d",&n,&m);
int u_, v_, w_, s_;
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&u_,&v_,&w_);
addedge(u_,v_,w_);
}
scanf("%d",&s_);
solve(n); cout << dfs(Belong[s_]) << endl;
}

  

Codeforces Round #447 (Div. 2)E. Ralph and Mushrooms的更多相关文章

  1. Codeforces Round #447 (Div. 2) B. Ralph And His Magic Field【数论/组合数学】

    B. Ralph And His Magic Field time limit per test 1 second memory limit per test 256 megabytes input ...

  2. Codeforces Round #447 (Div. 2) B. Ralph And His Magic Field 数学

    题目链接 题意:给你三个数n,m,k;让你构造出一个nm的矩阵,矩阵元素只有两个值(1,-1),且满足每行每列的乘积为k,问你多少个矩阵. 解法:首先,如果n,m奇偶不同,且k=-1时,必然无解: 设 ...

  3. Codeforces Round #447 (Div. 2) 题解 【ABCDE】

    BC都被hack的人生,痛苦. 下面是题解的表演时间: A. QAQ "QAQ" is a word to denote an expression of crying. Imag ...

  4. Codeforces Round #447 (Div. 2)

    我感觉这场CF还是比较毒的,虽然我上分了... Problem A  QAQ 题目大意:给你一个由小写字母构成的字符串,问你里面有多少个QAQ. 思路:找字符串中的A然后找两边的Q即可,可以枚举找Q, ...

  5. 【Codeforces Round #447 (Div. 2) B】Ralph And His Magic Field

    | [链接] 我是链接,点我呀:) [题意] 给你一个n*m矩阵,让你在里面填数字. 使得每一行的数字的乘积都为k; 且每一列的数字的乘积都为k; k只能为1或-1 [题解] 显然每个位置只能填1或- ...

  6. Codeforces Round #447 (Div. 2) 题解

    A.很水的题目,3个for循环就可以了 #include <iostream> #include <cstdio> #include <cstring> using ...

  7. Codeforces Round #447 (Div. 2) C 构造

    现在有一个长度为n的数列 n不超过4000 求出它的gcd生成set 生成方式是对<i,j> insert进去(a[i] ^ a[i+1] ... ^a[j]) i<=j 然而现在给 ...

  8. Codeforces Round #447 (Div. 2) C. Marco and GCD Sequence【构造/GCD】

    C. Marco and GCD Sequence time limit per test 1 second memory limit per test 256 megabytes input sta ...

  9. Codeforces Round #447 (Div. 2) A. QAQ【三重暴力枚举】

    A. QAQ time limit per test 1 second memory limit per test 256 megabytes input standard input output ...

随机推荐

  1. jvm学习-垃圾回收算法(三)

     垃圾回收算法  引用计数法 比较古老的一种垃圾回收算法.在java的GC并没有采用 增加一个引用 引用+1 减少一个引用引用减一 每次清除引用为0的的对象 缺点:不能回收循环引用的垃圾对象 标记清除 ...

  2. 洛谷 P3178 BZOJ 4034 [HAOI2015]树上操作

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  3. 洛谷 P1595 信封问题

    题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n 输出格式: 一个整数,代表有多少种情况. 输入输出样例 输 ...

  4. 哈哈,找到一种方式来简单模拟EXTJS中与服务器的AJAX交互啦。

    一直在测试客户端的EXTJS,但遇到服务器端就麻烦了,要建库,要写JSON,要有HTTP返回值. 今天测试了一个简单的方法,经过测试是OK了. 那,就是Python的SimpleHTTPServer模 ...

  5. HDU 2224 The shortest path

    The shortest path Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. UVA 1563 - SETI (高斯消元+逆元)

    UVA 1563 - SETI option=com_onlinejudge&Itemid=8&page=show_problem&category=520&probl ...

  7. 2.【SELinux学习笔记】概念

    1.强制类型的安全上下文     在SELinux中,訪问控制属性叫做安全上上下文.不管主体还是客体都有与之关联的安全上下文.通常安全上下文是由三部分组成:用户:角色:类型. 如: $id -Z  j ...

  8. Linux系统调用具体解释(怎样从用户空间进入内核空间)

    系统调用概述 计算机系统的各种硬件资源是有限的,在现代多任务操作系统上同一时候执行的多个进程都须要訪问这些资源,为了更好的管理这些资源进程是不同意直接操作的,全部对这些资源的訪问都必须有操作系统控制. ...

  9. AWS之VPC、Subnet与CIDR

    什么是CIDR? CIDR是英文Classless Inter-Domain Routing的缩写,中文是无类别域间路由,是一个在Internet上创建附加地址的方法,这些地址提供给服务提供商(ISP ...

  10. fragment.setMenuVisibility setUserVisibleHint

    [Android]Fragment真正意义上的onResume和onPause 前言 Fragment虽然有onResume和onPause的,但是这两个方法是Activity的方法,调用时机也是与A ...