[BeiJing2006]狼抓兔子 dijkstra+平面图最小割
一眼裸的最大流求最小割,然而数据范围过大,跑不下来。
我们可以将平面图转成对偶图,并进行连边。
这样,每条边的长度就对应原图中的割边长度。
起点到终点的最短路即为最小割。
别用SPFA,会死的很惨
Code:
#include<vector>
#include<queue>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<iostream>
#define U(i) ((i-1)<<1)|1
#define D(i) (i<<1)
using namespace std;
void SetIO(string a){
string in=a+".in",out=a+".out";
freopen(in.c_str(),"r",stdin);
freopen(out.c_str(),"w",stdout);
}
int s,t,n,m;
const int maxn=6000000+4;
int head[maxn],to[maxn],nex[maxn],val[maxn],edges,idx[1103][1103];
void add_edge(int u,int v,int c){
nex[++edges]=head[u], head[u]=edges, to[edges]=v, val[edges]=c;
} void build_row(int i,int j,int k){
if(i==1)add_edge(s,U(idx[i][j]),k);
else if(i==n) add_edge(D(idx[i-1][j]),t,k);
else add_edge(D(idx[i-1][j]),U(idx[i][j]),k),add_edge(U(idx[i][j]),D(idx[i-1][j]),k);
}
void build_col(int i,int j,int k){
if(j==1)add_edge(D(idx[i][j]),t,k);
else if(j==m) add_edge(s,U(idx[i][j-1]),k);
else add_edge(D(idx[i][j]),U(idx[i][j-1]),k),add_edge(U(idx[i][j-1]),D(idx[i][j]),k);
}
void build_cross(int i,int j,int k){
add_edge(U(idx[i][j]),D(idx[i][j]),k);
add_edge(D(idx[i][j]),U(idx[i][j]),k);
} long long d[maxn];
struct cmp{
bool operator()(int a,int b){
return d[a]>d[b];
}
};
priority_queue<long long ,vector<long long>,cmp>Q;
long long dijkstra()
{
bool done[maxn];
memset(done,false,sizeof(done));
memset(d,0x3f,sizeof(d));
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int u=Q.top();
Q.pop();
if(done[u])continue;
done[u]=1;
if(u==t) break;
for(int v=head[u];v;v=nex[v])
if(d[u]+val[v]<d[to[v]])
{
d[to[v]]=d[u]+val[v];
Q.push(to[v]);
}
}
return d[t];
} int main(){
SetIO("input");
scanf("%d%d",&n,&m);
s=0,t=((n*m)<<1)+6666;
int cur=0,cost=0;
for(int i=1;i<n;++i)
for(int j=1;j<m;++j) idx[i][j]=++cur;
for(int i=1;i<=n;++i)
for(int j=1;j<m;++j){
scanf("%d",&cost);
build_row(i,j,cost);
} for(int i=1;i<n;++i)
for(int j=1;j<=m;++j){
scanf("%d",&cost);
build_col(i,j,cost);
} for(int i=1;i<n;++i)
for(int j=1;j<m;++j){
scanf("%d",&cost);
build_cross(i,j,cost);
}
printf("%lld",dijkstra());
return 0;
}
---恢复内容结束---
[BeiJing2006]狼抓兔子 dijkstra+平面图最小割的更多相关文章
- BZOJ1001 [BeiJing2006]狼抓兔子(平面图最小割转最短路)
..和HDU3870类似..注意n=1和m=1的情况. #include<cstdio> #include<cstring> #include<queue> #in ...
- BZOJ1001 BeiJing2006 狼抓兔子 【网络流-最小割】*
BZOJ1001 BeiJing2006 狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较 ...
- 【Bzoj】1001狼抓兔子(平面图最小割转对偶图最短路)
YEAH 题目链接 终于做对这道题啦 建图的艰辛难以言表- - 顺便说一句我队列转STL啦 狼抓兔子的地图符合平面图定义,于是将该图转成对偶图并求出对偶图的最短路即可. 这篇博客给了我极大的帮助 ...
- 【BZOJ1001】狼抓兔子(平面图最小割转最短路)
题意:有一张平面图,求它的最小割.N,M.表示网格的大小,N,M均小于等于1000. 左上角点为(1,1),右下角点为(N,M).有以下三种类型的道路 1:(x,y)<==>(x+1,y ...
- BZOJ 1001 [BeiJing2006] 狼抓兔子(平面图最大流)
题目大意 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的.而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...
- BZOJ 1001 狼抓兔子 (网络流最小割/平面图的对偶图的最短路)
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 算法讨论: 1.可以用最大流做,最大流等于最小割. 2.可以把这个图转化其对偶图,然 ...
- 【bzoi2006】【狼抓兔子】【最小割】
Description Source: Beijing2006 [BJOI2006] 八中OJ上本题链接:http://www.lydsy.com/JudgeOnline/problem.php?id ...
- _bzoj1001 [BeiJing2006]狼抓兔子【平面图】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 顺便推荐一个ppt,里面有对平面图的介绍:浅析最大最小定理在信息学竞赛中的应用. 这里 ...
- [BZOJ1001][BeiJing2006]狼抓兔子(最小割转最短路|平面图转对偶图)
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 31805 Solved: 8494[Submit][ ...
随机推荐
- 深入浅出JDK动态代理(一)
1.何为代理 代理,即代替主角完成一些额外的事情.例如,明星都有经纪人,明星参演电影之前,经纪人作为明星的代理人和出资方洽谈片酬.排期等,而真正参与拍戏的还是明星本人,明星拍完戏后,由经纪人代理明星去 ...
- ONGUI->NGUI->UGUI (Unity UI史)
各GUI的介绍 ONGUI:Unity自带的绘制界面工具,它的成像原理是基于表层的,所以执行效率非常的低,并且没有提供复杂的UI的接口,就算开发者硬着头皮写上去只能让UI的执行效率更低. NGUI:第 ...
- [BZOJ3438][洛谷P1361]小M的作物
题目大意:有A.B两个集合和n个物品,每个物品只能放在一个集合里.每个物品放在不同集合内能获得不同价值.有一些物品,如果它们同时放在一个集合内,则会产生新的价值(A和B中都有且不一定相同(c1和c2) ...
- js兼容性——获取当前浏览器窗口的宽高
通过onresize事件 window.onresize = function () { document.title = client().width + " "+ client ...
- [terry笔记]python内置函数
总结一下内置函数,Build-in Function. 一.数学运算类 abs(x) 求绝对值 complex([real[, imag]]) 创建一个复数 divmod(a, b) 分别取商和余数注 ...
- Linux下基于多线程的echo
准备开始写一些Linux 下网络编程以及多线程的blog,就从这个简单的echo程序开始吧. 在echo的服务端使用多线程与客户进行通信,可以实现一个服务端程序同时连接多个客户的功能.那么,到底在服务 ...
- HDU 4165
一块药看成括号配对就行了.很明显的直接求卡特兰数. 今晚看了HDU 3240的题,有一点思路,但无情的TLE.想不到什么好方法了,看了别人的解答,哇...简直是天才的做法啊....留到星期六自己思考一 ...
- [Gatsby] Install Gatsby and Scaffold a Blog
In this lesson, you’ll install Gatsby and the plugins that give the default starter the ability to t ...
- POJ-1785-Binary Search Heap Construction(笛卡尔树)
Description Read the statement of problem G for the definitions concerning trees. In the following w ...
- 【Linux】进程调度概述
1 可运行队列 (基于实时进程调度) 调度程序中最主要的数据结构式运行队列(runqueue).可运行队列是给定处理器上的可运行进程的链表,每一个处理器一个. 每一个可投入运行的进程都唯一的归属于一个 ...