BZOJ 2821 分块+二分
题意:
N个数,M组询问,每次问[l,r]中有多少个数出现正偶数次。
思路:
把N个数分成sqrt(n)块,预处理d[i][j]表示第i块起点到第j块末尾的答案
枚举起点i,并维护一个数组记录每个数到目前为止出现的次数,从偶变奇、从奇变偶时相应增减答案。
把每个数在数列中出现的位置从小到大排序后放入到一个数组Arr中备用。
读入每个询问[l,r]。如果l和r在同一个块中暴力即可,否则设l所在块的末尾为l’,r所在块的起点为r’,[l’+1,r’-1]的答案已经预处理出。扫描l~l’, r’~r的所有数,统计每个数出现的次数cnt,第一次出现时把它加入队列。
对于队列中的每个数,在数组Arr中二分l’+1和r’-1,得到在[l’+1,r’-1]中出现的次数k。通过对k和当前队列中的数的cnt进行奇偶性讨论更新答案
(from lyd的题解…)
我们就可以vector +lower_bound()
搞定~
(也可以用可持久化线段树之类的东西…)
最后 祝他们幸福……
//By SiriusRen
#include <cmath>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=100005;
int n,c,m,a[N],Block,block[N],f[1111][1111],vis[N],ans,l,r,stk[N],top;
vector<int>vec[N];
int main(){
scanf("%d%d%d",&n,&c,&m),Block=sqrt(n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]),block[i]=(i-1)/Block+1,vec[a[i]].push_back(i);
for(int i=1;i<=block[n];i++){
memset(vis,0,sizeof(vis));int temp=0;
for(int j=lower_bound(block,block+1+n,i)-block;j<=n;j++){
vis[a[j]]++;
if(vis[a[j]]%2==0)temp++;
else if(vis[a[j]]!=1)temp--;
if(block[j]!=block[j+1])f[i][block[j]]=temp;
}
}
memset(vis,0,sizeof(vis));
for(int i=1;i<=m;i++){
scanf("%d%d",&l,&r);
l=(l+ans)%n+1,r=(r+ans)%n+1;
if(l>r)swap(l,r);ans=0;
int L=block[l]+1,R=block[r];
if(L<R){
int ll=lower_bound(block+1,block+1+n,L)-block-1;
int rr=lower_bound(block+1,block+1+n,R)-block;
R--;top=0;
for(int i=l;i<=ll;i++)vis[a[i]]++,stk[++top]=a[i];
for(int i=rr;i<=r;i++)vis[a[i]]++,stk[++top]=a[i];
ans=f[L][R];
for(int i=1;i<=top;i++)if(vis[stk[i]]){
int t=lower_bound(vec[stk[i]].begin(),vec[stk[i]].end(),rr)-
lower_bound(vec[stk[i]].begin(),vec[stk[i]].end(),ll+1);
if(!t){if(vis[stk[i]]%2==0)ans++;}
else if(t%2==0){if(vis[stk[i]]%2==1)ans--;}
else if(t%2==1&&vis[stk[i]]%2==1)ans++;
vis[stk[i]]=0;
}
}
else{
top=0;
for(int i=l;i<=r;i++)vis[a[i]]++;
for(int i=l;i<=r;i++)if(vis[a[i]]){
if(vis[a[i]]%2==0)ans++;
vis[a[i]]=0;
}
}
printf("%d\n",ans);
}
}
BZOJ 2821 分块+二分的更多相关文章
- bzoj 2821 分块处理
大题思路就是分块,将n个数分成sqrt(n)个块,然后 处理出一个w数组,w[i,j]代表第i个块到第j个块的答案 那么对于每组询问l,r如果l,r在同一个块中,直接暴力做就行了 如果不在同一个块中, ...
- bzoj 2821 分块
分块: 先预处理,将原序列分成长度为len的许多块,计算从第i块到第j块的答案,(可以做到O(n*n/len)). 每次询问时,将询问的区间分成三部分,:左边,中间,右边,中间是尽量大的一个块区间,其 ...
- [BZOJ 2821] 作诗(Poetize) 【分块】
题目链接:BZOJ - 2821 题目分析 因为强制在线了,所以无法用莫队..可以使用分块来做. 做法是,将 n 个数分成 n/x 个块,每个块大小为 x .先预处理出 f[i][j] ,表示从第 i ...
- BZOJ 3343: 教主的魔法(分块+二分查找)
BZOJ 3343: 教主的魔法(分块+二分查找) 3343: 教主的魔法 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1172 Solved: ...
- Bzoj 3343: 教主的魔法(分块+二分答案)
3343: 教主的魔法 Time Limit: 10 Sec Memory Limit: 256 MB Description 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息 ...
- [BZOJ 2821] 作诗
Link: BZOJ 2821 传送门 Solution: 一道类似区间众数的经典分块 由于个数为偶数这样的条件不能支持快速合并 因此要先$O(n*sqrt(n))$预处理出$pre[i][j]$表示 ...
- BZOJ_3343_教主的魔法_分块+二分查找
BZOJ_3343_教主的魔法_分块+二分查找 题意:教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列被编号为 ...
- 【bzoj2957】楼房重建 分块+二分查找
题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子.为了简化问题,我们考虑这些事件发生在一个二 ...
- 【bzoj2453】维护队列/【bzoj2120】数颜色 分块+二分
题目描述 你小时候玩过弹珠吗? 小朋友A有一些弹珠,A喜欢把它们排成队列,从左到右编号为1到N.为了整个队列鲜艳美观,小朋友想知道某一段连续弹珠中,不同颜色的弹珠有多少.当然,A有时候会依据个人喜好, ...
随机推荐
- P3399 丝绸之路
题目背景 张骞于公元前138年曾历尽艰险出使过西域.加强了汉朝与西域各国的友好往来.从那以后,一队队骆驼商队在这漫长的商贸大道上行进,他们越过崇山峻岭,将中国的先进技术带向中亚.西亚和欧洲,将那里的香 ...
- Eric6中编译窗体时,弹出提示:无法启动pyuic5的解决方案
用 Eric6 与 PyQt5 结合,非常方便的实现界面与逻辑分离,满足python的极速GUI编程,不需要在界面上花很多时间. 这是一对GUI开发完美的组合! Eric6中设计窗体时,弹出提示:‘无 ...
- SourceInsight3.5 Space 替换Tab
# SourceInsight3.5 Space 替换Tab 公司要求所有的缩进都要使用空格,而不是Tab.至于使用Tab,还是Space来进行缩进,这在网上有各种各样的讨论,毕竟使用Tab可以节省很 ...
- 移动端开发-Day1
什么是Node? 它是一个基于Chrome v8引擎的js运行环境,采用高效轻量级的事件驱动,非阻塞式的I/O模型. 非阻塞I/O? 例如,当程序运行到某一函数时,调用后立即返回,不需要等待函数执行完 ...
- 用Navicat Prenium12连接Oracle数据库(oracle11g版本)时报错ORA-28547:connection to server failed,probable Oracle Net admin error.解决办法
上网一查原来是oci.dll版本不对.因为Navicat是通过Oracle客户端连接Oracle服务器的,Oracle的客户端分为两种,一种是标准版,一种是简洁版,即Oracle Install Cl ...
- P1546 最短网络 Agri-Net (kruskal)
题目背景 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当然,他需要你的帮助. 题目描述 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其 ...
- Mybaitis-generator生成数据对象和时间的优化
1.本章涉及到知识点,Mybaitis-generator生成数据对象和时间,xml的引用*.properties 外部文件(在这之前必须导入了mybaitis的核心架包) A.在pom.xml的案例 ...
- Linux系统下python代码运行shell命令的方法
方法一:os.popen #!/usr/bin/python # -*- coding: UTF-8 -*- import os, sys # 使用 mkdir 命令 a = 'ls' b = os. ...
- java并发之阻塞队列
在前面我们接触的队列都是非阻塞队列,比如PriorityQueue.LinkedList(LinkedList是双向链表,它实现了Dequeue接口). 阻塞队列与普通队列的区别在于:当队列是空的时, ...
- jquery-ajax基础-XMLHttpRequest
XMLHttpRequest知识点 原生的ajax代码 var xmlhttp; // 声明一个对象 if (window.XMLHttpRequest) {// code for IE7+, Fir ...