官方的demo

from numpy import array
from math import sqrt from pyspark import SparkContext from pyspark.mllib.clustering import KMeans, KMeansModel sc = SparkContext(appName="clusteringExample")
# Load and parse the data
data = sc.textFile("/root/spark-2.1.1-bin-hadoop2.6/data/mllib/kmeans_data.txt")
parsedData = data.map(lambda line: array([float(x) for x in line.split(' ')])) # Build the model (cluster the data)
clusters = KMeans.train(parsedData, 2, maxIterations=10, initializationMode="random") # Evaluate clustering by computing Within Set Sum of Squared Errors
def error(point):
center = clusters.centers[clusters.predict(point)]
return sqrt(sum([x**2 for x in (point - center)])) WSSSE = parsedData.map(lambda point: error(point)).reduce(lambda x, y: x + y)
print("Within Set Sum of Squared Error = " + str(WSSSE)) # Save and load model
#clusters.save(sc, "target/org/apache/spark/PythonKMeansExample/KMeansModel")
#sameModel = KMeansModel.load(sc, "target/org/apache/spark/PythonKMeansExample/KMeansModel")

带归一化的例子:

import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.sql.functions.{col, udf} case class DataRow(label: Double, x1: Double, x2: Double)
val data = sqlContext.createDataFrame(sc.parallelize(Seq(
DataRow(3, 1, 2),
DataRow(5, 3, 4),
DataRow(7, 5, 6),
DataRow(6, 0, 0)
))) val parsedData = data.rdd.map(s => Vectors.dense(s.getDouble(1),s.getDouble(2))).cache()
val clusters = KMeans.train(parsedData, 3, 20)
val t = udf { (x1: Double, x2: Double) => clusters.predict(Vectors.dense(x1, x2)) }
val result = data.select(col("label"), t(col("x1"), col("x2"))) The important part are the last two lines. Creates a UDF (user-defined function) which can be directly applied to Dataframe columns (in this case, the two columns x1 and x2). Selects the label column along with the UDF applied to the x1 and x2 columns. Since the UDF will predict closestCluster, after this result will be a Dataframe consisting of (label, closestCluster)

参考:https://stackoverflow.com/questions/31447141/spark-mllib-kmeans-from-dataframe-and-back-again

import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.clustering._ val rows = data.rdd.map(r => (r.getDouble(1),r.getDouble(2))).cache()
val vectors = rows.map(r => Vectors.dense(r._1, r._2))
val kMeansModel = KMeans.train(vectors, 3, 20)
val predictions = rows.map{r => (r._1, kMeansModel.predict(Vectors.dense(r._1, r._2)))}
val df = predictions.toDF("id", "cluster")
df.show

Create column from RDD

It's very easy to obtain pairs of ids and clusters in form of RDD:

val idPointRDD = data.rdd.map(s => (s.getInt(0), Vectors.dense(s.getDouble(1),s.getDouble(2)))).cache()
val clusters = KMeans.train(idPointRDD.map(_._2), 3, 20)
val clustersRDD = clusters.predict(idPointRDD.map(_._2))
val idClusterRDD = idPointRDD.map(_._1).zip(clustersRDD)

Then you create DataFrame from that

val idCluster = idClusterRDD.toDF("id", "cluster")

It works because map doesn't change order of the data in RDD, which is why you can just zip ids with results of prediction.

Use UDF (User Defined Function)

Second method involves using clusters.predict method as UDF:

val bcClusters = sc.broadcast(clusters)
def predict(x: Double, y: Double): Int = {
bcClusters.value.predict(Vectors.dense(x, y))
}
sqlContext.udf.register("predict", predict _)

Now we can use it to add predictions to data:

val idCluster = data.selectExpr("id", "predict(x, y) as cluster")

Keep in mind that Spark API doesn't allow UDF deregistration. This means that closure data will be kept in the memory.

python spark kmeans demo的更多相关文章

  1. Python实现kMeans(k均值聚类)

    Python实现kMeans(k均值聚类) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=> ...

  2. RPi 2B python opencv camera demo example

    /************************************************************************************** * RPi 2B pyt ...

  3. [Spark][Python]spark 从 avro 文件获取 Dataframe 的例子

    [Spark][Python]spark 从 avro 文件获取 Dataframe 的例子 从如下地址获取文件: https://github.com/databricks/spark-avro/r ...

  4. [Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:

    [Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子: mydf001=sqlContext.read.format("jdbc").o ...

  5. 【Python学习笔记】使用python进行kmeans聚类

    使用python进行kmeans聚类 假设我们要解决一个这样的问题. 以下是一些同学,大萌是一个学霸,而我们想要找到这些人中的潜在学霸,所以我们要把这些人分为两类--学霸与非学霸. 高数 英语 Pyt ...

  6. 数据挖掘-聚类分析(Python实现K-Means算法)

    概念: 聚类分析(cluster analysis ):是一组将研究对象分为相对同质的群组(clusters)的统计分析技术.聚类分析也叫分类分析,或者数值分类.聚类的输入是一组未被标记的样本,聚类根 ...

  7. python spark 随机森林入门demo

    class pyspark.mllib.tree.RandomForest[source] Learning algorithm for a random forest model for class ...

  8. python spark 决策树 入门demo

    Refer to the DecisionTree Python docs and DecisionTreeModel Python docs for more details on the API. ...

  9. 随机森林算法demo python spark

    关键参数 最重要的,常常需要调试以提高算法效果的有两个参数:numTrees,maxDepth. numTrees(决策树的个数):增加决策树的个数会降低预测结果的方差,这样在测试时会有更高的accu ...

随机推荐

  1. Gerapy 使用详解

    https://blog.csdn.net/fengltxx/article/details/79894839

  2. Linq怎么支持Monad

    在上一篇创建了我们的第一个Monad, Identity<T>. 我们确定了类型要变成Monad, 它必须有一个type constructor(Identity<T>), 和 ...

  3. javascript中in运算符的介绍

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. 【图文】Excel中vlookup函数的使用方法

    今天统计数据,用到了Excel中vlookup函数,第一次使用当然少不了百度,经过反复研究后,算是解决了问题,现整理成文档. 一.实现效果 Sheet1 Sheet2   注:上图中sheet1商品条 ...

  5. mysql的模糊查询

    mysql模糊查询like/REGEXP(1)like / not like MySql的like语句中的通配符:百分号.下划线和escape %:表示任意个或多个字符.可匹配任意类型和长度的字符. ...

  6. spring的四种数据源配置

     DriverManagerDataSource   spring自带的数据源,配置如下: <bean id="dataSource" class="org.spr ...

  7. Javascript阻止表单提交

    Javascript阻止表单提交 Html 1.<form name="loginForm" action="login.aspx" method=&qu ...

  8. JS 从36个数字里面随机抽取8个

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. JS 1000以内的水仙花数 (三位数 各个数字的立方和等于本身 例如 1*1*1 + 5*5*5 + 7*7*7 = 157)

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. 序列模型(3)---LSTM(长短时记忆)

    摘自https://www.cnblogs.com/pinard/p/6519110.html 一.RNN回顾 略去上面三层,即o,L,y,则RNN的模型可以简化成如下图的形式: 二.LSTM模型结构 ...