poj--2391--Ombrophobic Bovines(floyd+二分+最大流拆点)
Time Limit: 1000MS | Memory Limit: 65536KB | 64bit IO Format: %I64d & %I64u |
Description
to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough
time for all the cows to get to some shelter.
The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.
Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.
Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.
Input
* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field
i.
* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.
Output
Sample Input
3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120
Sample Output
110
Hint
In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are
other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units.
Source
【题目大意】
给定一个无向图,点 i 处有 Ai 头牛,点 i 处的牛棚能容纳 Bi 头牛,求一个最短时
间 T 使得在 T 时间内所有的牛都能进到某一牛棚里去。(1 <= N <= 200, 1 <= M <=
1500, 0 <= Ai <= 1000, 0 <= Bi <= 1000, 1 <= Dij <= 1,000,000,000)
【建模方法】
将每个点 i 拆成两个点 i’, i’’,连边(s, i’, Ai), (i’’, t, Bi)。二分最短时间 T,若 d[i][j]<=T
(d[i][j]表示点 i, j 之间的最短距离)则加边(i’, j’’, ∞)。每次根据最大流调整二分
的上下界即可。
其中每条无向边表示两条方向相反的有向边,容量均为∞。
当二分到 T = 70 的时候,显然我们只加入了(2, 3)和(3, 4)两条无向边,因为只有
这两对点间的最短距离小于等于 70。但是从图中也可以看出,由于没有拆点,
点 2 也可以通过这两条边到达点 4,而实际上这是不允许的。也就是说我们所加
的限制条件没有起到作用。由此可见,只有拆点才是正确的做法。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<queue>
#include<algorithm>
using namespace std;
#define MAXN 1000
#define MAXM 200000+10
#define INF 10000000+100
#define LL long long
struct node
{
int u,v,cap,flow,next;
}edge[MAXM];
int head[MAXN],top;
int cur[MAXN],dis[MAXN];
int m,n;
int cow[MAXN],vis[MAXN],cap[MAXN];
LL map[MAXN][MAXN];
int sum;
void init()
{
top=0;
memset(head,-1,sizeof(head));
}
void floyd()
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
if(map[i][k]==INF) continue;
for(int j=1;j<=n;j++)
{
map[i][j]=min(map[i][j],map[i][k]+map[k][j]);
}
}
}
}
void input()
{
sum=0;
for(int i=1;i<=n;i++)
scanf("%d%d",&cow[i],&cap[i]),sum+=cow[i];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j) map[i][j]=0;
else map[i][j]=1e16;
}
}
int a,b;
LL c;
while(m--)
{
scanf("%d%d%lld",&a,&b,&c);
if(map[a][b]>c)
map[a][b]=map[b][a]=c;
}
floyd();
}
void add(int a,int b,int c)
{
node E1={a,b,c,0,head[a]};
edge[top]=E1;
head[a]=top++;
node E2={b,a,0,0,head[b]};
edge[top]=E2;
head[b]=top++;
}
void getmap(LL mid)
{
for(int i=1;i<=n;i++)
add(0,i,cow[i]);
for(int i=n+1;i<=2*n;i++)
add(i,2*n+1,cap[i-n]);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
if(map[i][j]<=mid)
{
add(i,j+n,INF);
if(i!=j)
add(j,i+n,INF);
}
}
}
}
bool bfs(int s,int e)
{
queue<int>q;
memset(vis,0,sizeof(vis));
memset(dis,-1,sizeof(dis));
while(!q.empty()) q.pop();
q.push(s);
dis[s]=0;
vis[s]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
node E=edge[i];
if(E.cap>E.flow&&!vis[E.v])
{
vis[E.v]=1;
dis[E.v]=dis[E.u]+1;
if(E.v==e) return true;
q.push(E.v);
}
}
}
return false;
}
int dfs(int x,int a,int e)
{
if(x==e||a==0)
return a;
int flow=0,f;
for(int &i=cur[x];i!=-1;i=edge[i].next)
{
node &E=edge[i];
if(dis[x]+1==dis[E.v]&&(f=dfs(E.v,min(E.cap-E.flow,a),e))>0)
{
E.flow+=f;
edge[i^1].flow-=f;
a-=f;
flow+=f;
if(a==0) break;
}
}
return flow;
}
int MAXflow(int s,int e)
{
int flow=0;
while(bfs(s,e))
{
memcpy(cur,head,sizeof(head));
flow+=dfs(s,INF,e);
}
return flow;
}
void slove()
{
LL left=0,right=1e16,mid,ans=1e16;
while(right>=left)
{
mid=(left+right)/2;
init();
getmap(mid);
if(MAXflow(0,2*n+1)==sum)
{
ans=mid;
right=mid-1;
}
else left=mid+1;
}
if(ans==1e16)
printf("-1\n");
else
printf("%lld\n",ans);
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
input();
slove();
}
return 0;
}
poj--2391--Ombrophobic Bovines(floyd+二分+最大流拆点)的更多相关文章
- POJ 2391 Ombrophobic Bovines ★(Floyd+二分+拆点+最大流)
[题意]有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 和POJ2112很类 ...
- POJ 2391 Ombrophobic Bovines(二分+拆点+最大流)
http://poj.org/problem?id=2391 题意: 给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T,使得在T时间内所有的牛都能进到某一牛棚里去. 思路 ...
- POJ 2391 Ombrophobic Bovines【二分 网络流】
题目大意:F个草场,P条道路(无向),每个草场初始有几头牛,还有庇护所,庇护所有个容量,每条道路走完都有时间,问所有奶牛都到庇护所最大时间最小是多少? 思路:和POJ2112一样的思路,二分以后构建网 ...
- poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap
poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...
- poj 2391 Ombrophobic Bovines(最大流+floyd+二分)
Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 14519Accepted: 3170 De ...
- POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)
Ombrophobic Bovines Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11651 Accepted: 2 ...
- poj 2391 Ombrophobic Bovines 最短路 二分 最大流 拆点
题目链接 题意 有\(n\)个牛棚,每个牛棚初始有\(a_i\)头牛,最后能容纳\(b_i\)头牛.有\(m\)条道路,边权为走这段路所需花费的时间.问最少需要多少时间能让所有的牛都有牛棚可待? 思路 ...
- POJ 2391 Ombrophobic Bovines
Ombrophobic Bovines Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18623 Accepted: 4 ...
- POJ 2391 Ombrophobic Bovines (二分答案+floyd+最大流)
<题目链接> 题目大意: 给定一个有$n$个顶点和$m$条边的无向图,点$i$ 处有$A_i$头牛,点$i$ 处的牛棚能容纳$B_i$头牛,每条边有一个时间花费$t_i$(表示从一个端点走 ...
随机推荐
- luogu P2137 Gty的妹子树(分块,主席树)
询问的化我们可以建主席树.然后修改?,树套树...,最后插入?炸了. 所以我们对操作进行分块. 我们先对整棵树建一个主席树.修改,插入我们先记录下来.然后询问的时候先对主席树查询,然后暴力遍历我们记录 ...
- #undef 的用法
在Visual Studio2008中编写如下代码: #include <iostream> using namespace std; int main() { #define MODI ...
- LaTeX argmin argmax 下标使用方法
本系列文章由 @YhL_Leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50036001 LaTeX中,使用arg ...
- 现代C++
C++ 是世界上最常用的编程语言之一. 编写良好的 C++ 程序是快速.高效的. 该语言比其他语言更加灵活,因为你可以使用它来创建各种应用,包括有趣刺激的游戏.高性能科学软件.设备驱动程序.嵌入式程序 ...
- CodeForces 453A
Twilight Sparkle was playing Ludo with her friends Rainbow Dash, Apple Jack and Flutter Shy. But she ...
- nginx和apache作为webserver的差别
1.两者所用的驱动模式不同. nginx使用的是epoll的非堵塞模式事件驱动. apache使用的是select的堵塞模式事件驱动. 2.fastcgi和cgi的差别 当用户请求web服务的时候.w ...
- js面向对象编程:怎样定义常量?
js中有一个keywordconst,但眼下的浏览器似乎还不支持,假设一定要定义一些常量,事实上能够使用闭包,匿名函数实现常量的定义. 比如: var Class = (function() { va ...
- Mongodb集群之副本集
上篇咱们遗留了几个问题 1主节点是否能自己主动切换连接? 眼下须要手动切换 2主节点读写压力过大怎样解决 3从节点每一个上面的数据都是对数据库全量拷贝,从节点压力会不会过大 4数据压力达到机器支撑不了 ...
- 英语音乐---三、Cry on my shoulder
英语音乐---三.Cry on my shoulder 一.总结 一句话总结:Cry on my shoulder 在我的肩膀上哭泣 1.If the hero never comes to you. ...
- IDEA中FindBugs编码规范工具使用
IDEA中安装FindBugs插件: file--Settings--Plugins 在Plugins搜索FindBugs: 安装完成后在项目中选中文件右键找到findBugs: 检查代码结果: 按照 ...