利用矩阵来做变换,参考Max大神的思想的,虽然不是同一道题。

-----------

给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转
    这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。

转自M67大神

------

以下是NYOJ的练习题

感觉这种做法是十分巧妙的。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
struct Matrax {
double m[3][3];
};
double PI;
struct Point {
double x,y;
}p[10100]; void init(Matrax &p){
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
p.m[i][j]=0;
} Matrax enM(double L,double P){
Matrax c;
init(c);
c.m[0][0]=c.m[1][1]=c.m[2][2]=1;
c.m[0][2]=L;c.m[1][2]=P;
return c;
} Matrax enX(){
Matrax c;
init(c);
c.m[1][1]=-1;
c.m[0][0]=c.m[2][2]=1;
return c;
} Matrax enY(){
Matrax c;
init(c);
c.m[0][0]=-1;
c.m[1][1]=c.m[2][2]=1;
return c;
} Matrax enS(double P){
Matrax c;
init(c);
c.m[1][1]=P;
c.m[0][0]=P;c.m[2][2]=1;
return c;
} Matrax enR(double R){
Matrax c;
init(c);
c.m[0][0]=cos(R);c.m[0][1]=-1*sin(R);
c.m[1][0]=sin(R);c.m[1][1]=cos(R);
c.m[2][2]=1;
return c;
} Matrax multi(Matrax a,Matrax b){
Matrax c;
for(int i=0;i<3;i++){
for(int j=0;j<3;j++){
c.m[i][j]=0;
for(int k=0;k<3;k++)
c.m[i][j]+=a.m[i][k]*b.m[k][j];
}
}
return c;
} int main(){
PI=acos(-1.0);
int N,M;
double ts[3];
char t; double x,y,L,P,R;
while(scanf("%d %d",&N,&M)!=EOF){
Matrax ans;
init(ans);
ans.m[0][0]=ans.m[1][1]=ans.m[2][2]=1;
for(int i=0;i<N;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
for(int i=0;i<M;i++){
cin>>t;
Matrax tt;
if(t=='X'){
tt=enX();
ans=multi(tt,ans);
}
else if(t=='Y'){
tt=enY();
ans=multi(tt,ans);
}
else if(t=='M'){
scanf("%lf%lf",&L,&P);
tt=enM(L,P);
ans=multi(tt,ans);
}
else if(t=='S'){
scanf("%lf",&P);
tt=enS(P);
ans=multi(tt,ans);
}
else if(t=='R'){
scanf("%lf",&R);
R=PI*R/180.0;
tt=enR(R);
ans=multi(tt,ans);
}
}
for(int i=0;i<N;i++){
ts[0]=p[i].x; ts[1]=p[i].y; ts[2]=1;
double ansx=ts[0]*ans.m[0][0]+ts[1]*ans.m[0][1]+ts[2]*ans.m[0][2];
if(fabs(ansx-0)<1e-8) ansx=0;
double ansy=ts[0]*ans.m[1][0]+ts[1]*ans.m[1][1]+ts[2]*ans.m[1][2];
if(fabs(ansy-0)<1e-8) ansy=0;
printf("%.1lf %.1lf\n",ansx,ansy);
}
}
return 0;
}

  

NYOJ 298的更多相关文章

  1. NYOJ 298 点的变换

    题目链接:298 点的变换 这题放在矩阵快速幂里,我一开始想不透它是怎么和矩阵搭上边的,然后写了个暴力的果然超时,上网看了题解后,发现竟然能够构造一些精巧的矩阵来处理,不得不说实在太强大了! http ...

  2. NYOJ 298 点的变换 矩阵乘法

    http://acm.nyist.net/JudgeOnline/problem.php?pid=298 最好还是自己手推一下矩阵式子..不算太难..但是有一些小知识.... 首先当然是矩阵的细节.. ...

  3. NYOJ 298 相变点(矩阵高速功率)

    点的变换 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描写叙述 平面上有不超过10000个点.坐标都是已知的.如今可能对全部的点做下面几种操作: 平移一定距离(M),相对X ...

  4. NYOJ 298-点的变换(经典矩阵解决点平移、缩放、翻转和旋转)

    题目地址:NYOJ 298 思路:该题假设用对每一个点模拟的操作.时间复杂度为O(n+m),结果肯定超时.然而利用矩阵乘法能够在O(m)的时间内把全部的操作合并为一个矩阵,然后每一个点与该矩阵相乘能够 ...

  5. NYOJ 1007

    在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...

  6. NYOJ 998

    这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...

  7. NYOJ 333

    http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=admin 欧拉函数 E(x)表示比x小的且与x互质的正整数的个数. ...

  8. NYOJ 99单词拼接(有向图的欧拉(回)路)

    /* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...

  9. nyoj 10 skiing 搜索+动归

    整整两天了,都打不开网页,是不是我提交的次数太多了? nyoj 10: #include<stdio.h> #include<string.h> ][],b[][]; int ...

随机推荐

  1. 杂项-地图:LBS

    ylbtech-杂项-地图:LBS 基于位置的服务,它是通过电信移动运营商的无线电通讯网络(如GSM网.CDMA网)或外部定位方式(如GPS)获取移动终端用户的位置信息(地理坐标,或大地坐标),在地理 ...

  2. 当使用Spring MVC @Valid对输入框进行验证的时候,可能会遇到以下的异常:Neither BindingResult nor plain target object for bean name ‘mybean’ available as request attribute

    转自:https://www.cnblogs.com/wenhulu/p/5555457.html 当使用Spring MVC @Valid对输入框进行验证的时候,可能会遇到以下的异常: Neithe ...

  3. Mac osx下成功安装tensorflow

    安装tensorflow有多种方式:Pip, Docker, Virtualenv, Anaconda 或 源码编译的方法安装. 我是在pip下成功安装tensorflow,以下只介绍在pip下安装( ...

  4. java三大版本解析

    JAVA三大版本代表着JAVA技术的三个应用领域:JAVASE.JAVAME.JAVAEE. JAVA以前很长一段时间被称为JAVA2,所以现在很多人习惯称为J2SE.J2ME.J2EE,它们表示的含 ...

  5. PostgreSQL的HA解决方案-项目概述

    公司使用的数据库时postgresql,一直运行都很流畅,但是最近java新做的管理平台,由于登录用户较多,并发性比较大.另外新系统可能优化也存在问题,所以pg经常崩溃,所以我就开始研究如何事项pg的 ...

  6. Caffe: Caffe的Python接口

    官方参考:http://caffe.berkeleyvision.org/installation.html 官方介绍是这样的: Python The main requirements are nu ...

  7. 杭电 1021 Fibonacci Again

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1021 解题思路:根据之前发现斐波那契数列的规律,即为f(n)能被3整除当且仅当n能被4整除. 于是联想 ...

  8. 我的C++笔记(Hello World)

    其实在学习C++之前,是因为自己想学AI,但是发现好多AI教程都是使用C语言来进行讲解的,真心感觉到C真的计算机的基础语言行业的共同语言.至于为什么是C++,主要是C++是从C语言演变而来的,兼容C, ...

  9. Programming Recipes

    Recipes是从一本书上看来的,即有诀窍又有食谱的意思.这里想记一些工作中遇到的问题和解决方法,说决窍有点过了,说食谱照单做又不足,所以Recipe这个词两个意思都有混合起来正合适. 1.Windo ...

  10. (转)基于MVC4+EasyUI的Web开发框架形成之旅--权限控制

    http://www.cnblogs.com/wuhuacong/p/3361351.html 我在上一篇随笔<基于MVC4+EasyUI的Web开发框架形成之旅--框架总体界面介绍>中大 ...