import numpy as np

Array 数组

print(np.zeros((2, 2)))  # [[0. 0.] [0. 0.]]
print(np.ones((2, 2))) # [[1. 1.] [1. 1.]]
print(np.full((2, 2), 7)) # [[7 7] [7 7]]
print(np.eye(2)) # [[1. 0.] [0. 1.]] print(np.random.random((2, 2))) # [[0.67151478 0.61234823] [0.85594251 0.0654221 ]]
a = np.array(np.arange(9).reshape(3, 3))
print(a) # [[0 1 2] [3 4 5] [6 7 8]] print(a[0, 0]) # 0
print(a[0][0]) # 0
print(type(a[0, 0])) # <class 'numpy.int64'>
print(type(a[0][0])) # <class 'numpy.int64'>
print(a[0, 0].shape) # ()
print(a[0][0].shape) # () print(a[1, :]) # [3 4 5]
print(a[1][:]) # [3 4 5]
print(type(a[1, :])) # <class 'numpy.ndarray'>
print(type(a[1][:])) # <class 'numpy.ndarray'>
print(a[1, :].shape) # (3,)
print(a[1][:].shape) # (3,)
a = np.array(np.arange(9).reshape(3, 3))
print(a) # [[0 1 2] [3 4 5] [6 7 8]] print(a[1, :]) # [3 4 5]
print(a[1:2, :]) # [[3 4 5]]
print(a[1, :].shape) # (3,)
print(a[1:2, :].shape) # (1, 3) print(a[:, 1]) # [1 4 7]
print(a[:, 1:2]) # [[1] [4] [7]]
print(a[:, 1].shape) # (3,)
print(a[:, 1:2].shape) # (3, 1)
a = np.array(np.arange(1, 7, 1).reshape(3, 2))
print(a) # [[1 2] [3 4] [5 6]]
print(a[[0, 1, 2], [0, 1, 0]]) # [1 4 5]
print(np.array([a[0, 0], a[1, 1], a[2, 0]])) # [1 4 5] a = np.array(np.arange(1, 13, 1).reshape(3, 4))
print(a) # [[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]]
b = np.array([0, 2])
print(a[np.arange(1, 3, 1), b]) # [ 5 11]
a[np.arange(1, 3, 1), b] += 10
print(a) # [[ 1 2 3 4] [15 6 7 8] [ 9 10 21 12]]

bool 布尔

a = np.array(np.arange(1, 7, 1).reshape(3, 2))

print(a)  # [[1 2] [3 4] [5 6]]

bool_idx = (a > 2)

print(bool_idx)  # [[False False] [ True  True] [ True  True]]
print(a[bool_idx]) # [3 4 5 6]
print(a[a > 2]) # [3 4 5 6]

type 类型

x = np.array([1, 2])
print(x.dtype) # int64 x = np.array([1.0, 2.0])
print(x.dtype) # float64 x = np.array([1, 2], dtype=np.int8)
print(x.dtype) # int8

基本运算

x = np.array(np.arange(1, 5, 1).reshape(2, 2), dtype=np.float64)
y = np.array(np.arange(5, 9, 1).reshape(2, 2), dtype=np.float64) print(x) # [[1. 2.] [3. 4.]]
print(y) # [[5. 6.] [7. 8.]] print(x + y)
print(np.add(x, y)) # [[ 6. 8.] [10. 12.]] print(x - y)
print(np.subtract(x, y)) # [[-4. -4.] [-4. -4.]] print(x * y)
print(np.multiply(x, y)) # [[ 5. 12.] [21. 32.]] print(x / y)
print(np.divide(x, y)) # [[0.2 0.33333333] [0.42857143 0.5 ]] print(np.sqrt(x)) # [[1. 1.41421356] [1.73205081 2. ]]

矩阵乘法

x = np.array([[1, 2], [3, 4]])
y = np.array([[5, 6], [7, 8]]) v = np.array([9, 10])
w = np.array([11, 12]) print(v.dot(w))
print(np.dot(v, w)) # 219 print(x.dot(v))
print(np.dot(x, v)) # [29 67] print(x.dot(y))
print(np.dot(x, y)) # [[19 22] [43 50]]

sum 求和

x = np.array([[1, 2], [3, 4]])

print(x)  # [[1 2] [3 4]]
print(np.sum(x)) # 10
print(np.sum(x, axis=0)) # [4 6] Compute sum of each column
print(np.sum(x, axis=1)) # [3 7] Compute sum of each row

.T 转置

x = np.array([[1, 2], [3, 4]])
v = np.array([1, 2, 3]) print(x.T) # [[1 3] [2 4]] 2D array
print(v.T) # [1 2 3] 1D array

broadcasting 广播

x = np.array(np.arange(1, 13, 1).reshape(4, 3))  # [[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12]]
v = np.array([1, 0, 1])
y = np.empty_like(x) print(y) # [[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]] for i in range(4):
y[i, :] = x[i, :] + v print(y) # [[ 2 2 4] [ 5 5 7] [ 8 8 10] [11 11 13]] x = np.array(np.arange(1, 13, 1).reshape(4, 3))
v = np.array([1, 0, 1])
vv = np.tile(v, (4, 1)) # [[1 0 1] [1 0 1] [1 0 1] [1 0 1]]
y = x + vv print(y) # [[ 2 2 4] [ 5 5 7] [ 8 8 10] [11 11 13]] y = x + v # broadcaste print(y) # [[ 2 2 4] [ 5 5 7] [ 8 8 10] [11 11 13]] v = np.array([1, 2, 3])
w = np.array([4, 5]) print(np.reshape(v, (3, 1)) * [0, 1, 2]) # [[0 1 2] [0 2 4] [0 3 6]] w has 3 numbers,so has 3 rows
x = np.array([[1, 2, 3], [4, 5, 6]]) print(x + v) # [[2 4 6] [5 7 9]]
print((x.T + w).T) # [[ 5 6 7] [ 9 10 11]]
print(x + np.reshape(w, (2, 1))) # [[ 5 6 7] [ 9 10 11]]
print(x * 2) # [[ 2 4 6] [ 8 10 12]]

numpy基础篇-简单入门教程2的更多相关文章

  1. numpy基础篇-简单入门教程4

    np.set_printoptions(precision=3),只显示小数点后三位 np.random.seed(100) rand_arr = np.random.random([2, 2]) n ...

  2. numpy基础篇-简单入门教程3

    np import numpy as np np.__version__ print(np.__version__) # 1.15.2 numpy.arange(start, stop, step, ...

  3. numpy基础篇-简单入门教程1

    np.split(A, 4, axis=1),np.hsplit(A, 4) 分割 A = np.arange(12).reshape((3, 4)) # 水平方向的长度是4 print(np.spl ...

  4. NumPy简单入门教程

    # NumPy简单入门教程 NumPy是Python中的一个运算速度非常快的一个数学库,它非常重视数组.它允许你在Python中进行向量和矩阵计算,并且由于许多底层函数实际上是用C编写的,因此你可以体 ...

  5. 程序员,一起玩转GitHub版本控制,超简单入门教程 干货2

    本GitHub教程旨在能够帮助大家快速入门学习使用GitHub,进行版本控制.帮助大家摆脱命令行工具,简单快速的使用GitHub. 做全栈攻城狮-写代码也要读书,爱全栈,更爱生活. 更多原创教程请关注 ...

  6. GitHub这么火,程序员你不学学吗? 超简单入门教程 【转载】

    本GitHub教程旨在能够帮助大家快速入门学习使用GitHub. 本文章由做全栈攻城狮-写代码也要读书,爱全栈,更爱生活.原创.如有转载,请注明出处. GitHub是什么? GitHub首先是个分布式 ...

  7. Flyway 简单入门教程

    原文地址:Flyway 简单入门教程 博客地址:http://www.extlight.com 一.前言 Flyway 是一款开源的数据库版本管理工具,它更倾向于规约优于配置的方式.Flyway 可以 ...

  8. .net 开源模板引擎jntemplate 实战演习:基础篇之入门

    一.简介 模板引擎是Web开发中非常重要的一环,它负责将页面上的动态内容呈现出最终的结果展现给前端用户,在asp.net mvc中,我们最熟悉的就是Razor了,作为官方的视图引擎(视图引擎不等同于模 ...

  9. 【ASP.NET 基础】WCF入门教程一(什么是WCF)?

    一.概述 Windows Communication Foundation(WCF)是由微软发展的一组数据通信的应用程序开发接口,可以翻译为Windows通讯接口,它是.NET框架的一部分.由 .NE ...

随机推荐

  1. 配置NTP集群时间同步(二)

    [root@hadoop1 bin]# rpm -qa|grep ntp 没有的话用yum -y install ntp安装(要记着每台机器上都要安装) [root@hadoop1 bin]# vi ...

  2. Spannable对textview首行缩进的设置

    1.创建Spannable对象 SpannableString contentSpan = new SpannableString(data.getBusinessTitle()); 2.设置文本缩进 ...

  3. STM8S汇编代码分析

    转载:http://blog.csdn.net/u010093140/article/details/50021897使用STVD建立完汇编工程项目之后(具本建立方法可以看我的另一篇博文http:// ...

  4. php如何实现文件下载

    php如何实现文件下载 1. 设置超链接的href属性 <ahref="文件地址"></a> 如果浏览器不能解析该文件,浏览器会自动下载.而如果文件是图片或 ...

  5. shell-4.bash的变量:用户自定义变量

    目录 内容

  6. dispatch_group_t踩过的坑

    如果想在dispatch_queue中所有的任务执行完成后在做某种操作,在串行队列中,可以把该操作放到最后一个任务执行完成后继续,但是在并行队列中怎么做呢.这就有dispatch_group 成组操作 ...

  7. c++类模板初探

    #include <iostream> #include <string> using namespace std; // 你提交的代码将嵌入到这里 ; template &l ...

  8. 在Scrapy中如何利用Xpath选择器从HTML中提取目标信息(两种方式)

    前一阵子我们介绍了如何启动Scrapy项目以及关于Scrapy爬虫的一些小技巧介绍,没来得及上车的小伙伴可以戳这些文章: 手把手教你如何新建scrapy爬虫框架的第一个项目(上) 手把手教你如何新建s ...

  9. Django之ORM的增删改查

    一.添加表记录 对于单表有两种方式 # 添加数据的两种方式 # 方式一:实例化对象就是一条表记录 Frank_obj = models.Student(name ="海东",cou ...

  10. rescan-scsi-bus.sh linux扫盘 脚本

    [root@ftp:/home/tools/shell] > yum install sg3_utils* Loaded plugins: fastestmirror Repository ba ...