技术

d3、d3.pack、d3.hierarchy

展示

https://bl.ocks.org/xunhanliu/e0688dc2ae9167c4c7fc264c0aedcdd1

关于怎么使用,代码中有关键注释。

 

d3.pack

// https://d3js.org Version 4.8.0. Copyright 2017 Mike Bostock.

层级数据的结构

这是一种典型的树形结构,每个节点包含树的深度和高度,还有“父亲指针”,“儿子指针”。

部分源码

 var index$2 = function() {
var radius = null,
dx = 1,
dy = 1,
padding = constantZero; function pack(root) {
root.x = dx / 2, root.y = dy / 2;
if (radius) {
root.eachBefore(radiusLeaf(radius)) //前序遍历,对每个节点的半径进行设置。
.eachAfter(packChildren(padding, 0.5)) //后序遍历
.eachBefore(translateChild(1));
} else {
root.eachBefore(radiusLeaf(defaultRadius$1))
.eachAfter(packChildren(constantZero, 1))
.eachAfter(packChildren(padding, root.r / Math.min(dx, dy)))//确定每个节点的半径
.eachBefore(translateChild(Math.min(dx, dy) / (2 * root.r)));//处理每个节点的偏移
}
return root;
} pack.radius = function(x) {
return arguments.length ? (radius = optional(x), pack) : radius;
}; pack.size = function(x) {
return arguments.length ? (dx = +x[0], dy = +x[1], pack) : [dx, dy];
}; pack.padding = function(x) {
return arguments.length ? (padding = typeof x === "function" ? x : constant$8(+x), pack) : padding;
}; return pack;
}; function radiusLeaf(radius) {
return function(node) {
if (!node.children) {
node.r = Math.max(0, +radius(node) || 0);
}
};
} function packChildren(padding, k) {
return function(node) {
if (children = node.children) {
var children,
i,
n = children.length,
r = padding(node) * k || 0,
e; if (r) for (i = 0; i < n; ++i) children[i].r += r;
e = packEnclose(children);
if (r) for (i = 0; i < n; ++i) children[i].r -= r;
node.r = e + r;
}
};
} function translateChild(k) {
return function(node) {
var parent = node.parent;
node.r *= k;
if (parent) {
node.x = parent.x + k * node.x;
node.y = parent.y + k * node.y;
}
};
}

主要逻辑在L10-L12.

  1. root.eachBefore(radiusLeaf(radius))函数 比较简单,前序遍历,对每个节点的半径进行设置。其中radius是回调函数,参数是node.
  2. root.eachAfter(packChildren(padding, 0.5)) //后序遍历,在packEnclose函数中设置每个children相对于此节点的位置,并返回此节点的半径大小。这句话完成了半径的设置和节点相对于父节点的相对位置。
  3. root.eachBefore(translateChild(1)); //由于第二步的位置偏移只是相对于父节点的,这里,递归的把children的偏移加上其父亲节点的偏移。

注意L15行功能是否多余:

  本来packEnclose生成的布局是圆形相切布局(圆紧挨着圆,可能不太好看),如何在圆之间加一些空隙,这里作者用了一个小技巧:把计算之前的圆增大一点,经过packEnclose布局后,再把圆的半径给恢复。注:原数据中除叶子节点外都没有半径信息的,如果没有L15的代码的话,冒然增加一个padding,是无效果的,最后的结果是相切布局。L15的结果是把所有节点的半径都设置一下(相切布局)。

其中packChildren中的packEnclose函数是布局的核心代码。此部分代码未使用碰撞的思想(需要迭代,速度就更慢了),直接进行几何的相切布局。

使用方式:

返回结果: 外圆的半径。注意原数据a中每个元素多了一些坐标信息。意思就是,给一组点的大小,经过这个函数后,会得出一些布局信息。

d3 bubble源码分析的更多相关文章

  1. d3碰撞源码分析

    技术 d3. d3.force.d3.geom.quadtree. d3.geom.quadtree 四叉树的应用:图像处理.空间数据索引.2D中的快速碰撞检测.存储稀疏数据等,游戏编程. 上图中的数 ...

  2. jQuery源码分析系列(36) : Ajax - 类型转化器

    什么是类型转化器? jQuery支持不同格式的数据返回形式,比如dataType为 xml, json,jsonp,script, or html 但是浏览器的XMLHttpRequest对象对数据的 ...

  3. OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

    http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...

  4. 一个普通的 Zepto 源码分析(三) - event 模块

    一个普通的 Zepto 源码分析(三) - event 模块 普通的路人,普通地瞧.分析时使用的是目前最新 1.2.0 版本. Zepto 可以由许多模块组成,默认包含的模块有 zepto 核心模块, ...

  5. Zepto事件模块源码分析

    Zepto事件模块源码分析 一.保存事件数据的handlers 我们知道js原生api中要移除事件,需要传入绑定时的回调函数.而Zepto则可以不传入回调函数,直接移除对应类型的所有事件.原因就在于Z ...

  6. 鸿蒙内核源码分析(编译过程篇) | 简单案例窥视GCC编译全过程 | 百篇博客分析OpenHarmony源码| v57.01

    百篇博客系列篇.本篇为: v57.xx 鸿蒙内核源码分析(编译过程篇) | 简单案例窥视编译全过程 | 51.c.h.o 编译构建相关篇为: v50.xx 鸿蒙内核源码分析(编译环境篇) | 编译鸿蒙 ...

  7. ABP源码分析一:整体项目结构及目录

    ABP是一套非常优秀的web应用程序架构,适合用来搭建集中式架构的web应用程序. 整个Abp的Infrastructure是以Abp这个package为核心模块(core)+15个模块(module ...

  8. HashMap与TreeMap源码分析

    1. 引言     在红黑树--算法导论(15)中学习了红黑树的原理.本来打算自己来试着实现一下,然而在看了JDK(1.8.0)TreeMap的源码后恍然发现原来它就是利用红黑树实现的(很惭愧学了Ja ...

  9. nginx源码分析之网络初始化

    nginx作为一个高性能的HTTP服务器,网络的处理是其核心,了解网络的初始化有助于加深对nginx网络处理的了解,本文主要通过nginx的源代码来分析其网络初始化. 从配置文件中读取初始化信息 与网 ...

随机推荐

  1. Calender

    public static void main(String[] args) { // TODO 自动生成的方法存根 Calendar c = new GregorianCalendar(); c., ...

  2. android实现自动安装

    安装: String str = "/CanavaCancel.apk"; String fileName = Environment.getExternalStorageDire ...

  3. How To Do @Async in Spring--转

    原文地址:http://www.baeldung.com/spring-async 1. Overview In this article, we’ll explore the asynchronou ...

  4. Storm Spout

    本文主要介绍了Storm Spout,并以KafkaSpout为例,进行了说明. 概念 数据源(Spout)是拓扑中数据流的来源.一般 Spout 会从一个外部的数据源读取元组然后将他们发送到拓扑中. ...

  5. 用AI识别内部人威胁面临的道德规范

    用AI识别内部人威胁面临的道德规范 还记得汤姆·克鲁斯的<少数派报告>吗?人工智能可识别昭示未来风险的员工行为.该如何有效且有道德地使用这一数据呢? 为保护公司网络不受恶意软件.数据渗漏和 ...

  6. 设置fixed,横向滚动条失效

    window.onscroll = function(){ var sl = -Math.max(document.body.scrollLeft,document.documentElement.s ...

  7. 解决IIS服务器部署 字体图标找不到的原因

    引言 我们往往在IIS上部署Web项目,或者发布Web项目的时候,经常会遇到浏览器找不到字体文件(woff/woff2)产生的错误.这样会导致浏览器无法加载字体图标,在影响加载时间的同时,更无法显示对 ...

  8. How Javascript works (Javascript工作原理) (二) 引擎,运行时,如何在 V8 引擎中书写最优代码的 5 条小技巧

    个人总结: 一个Javascript引擎由一个标准解释程序,或者即时编译器来实现. 解释器(Interpreter): 解释一行,执行一行. 编译器(Compiler): 全部编译成机器码,统一执行. ...

  9. iOS开发——GCD总结

    Grand Central Dispatch,简称GCD,在异步执行任务的技术之一. 一般将应用程序中记述的线程管理用的代码在系统级中实现,开发者只需要定义想执行的任务并追加到适当的Dispatch ...

  10. mac终端安装webpack的时候报错Err,解决的办法 sudo npm install webpack -g

    MacBook-Air:~ xxx$ npm install webpack -g npm WARN invalid config registry="" npm WARN inv ...