和HDOJ4888是一样的问题,最大流推断多解

1.把ISAP卡的根本出不来结果,仅仅能把全为0或者全为满流的给特判掉......

2.在残量网络中找大于2的圈要用一种类似tarjian的方法从汇点開始找,推断哪些点没有到汇点

A simple Gaussian elimination problem.

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 1170    Accepted Submission(s): 377

Problem Description
Dragon is studying math. One day, he drew a table with several rows and columns, randomly wrote numbers on each elements of the table. Then he counted the sum of each row and column. Since he thought the map will be useless after he got the sums, he destroyed
the table after that.



However Dragon's mom came back and found what he had done. She would give dragon a feast if Dragon could reconstruct the table, otherwise keep Dragon hungry. Dragon is so young and so simple so that the original numbers in the table are one-digit number (e.g.
0-9).



Could you help Dragon to do that?
 
Input
The first line of input contains only one integer, T(<=30), the number of test cases. Following T blocks, each block describes one test case.



There are three lines for each block. The first line contains two integers N(<=500) and M(<=500), showing the number of rows and columns.



The second line contains N integer show the sum of each row.



The third line contains M integer show the sum of each column.
 
Output
Each output should occupy one line. Each line should start with "Case #i: ", with i implying the case number. For each case, if we cannot get the original table, just output: "So naive!", else if we can reconstruct the table by more than one ways, you should
output one line contains only: "So young!", otherwise (only one way to reconstruct the table) you should output: "So simple!".
 
Sample Input
3
1 1
5
5
2 2
0 10
0 10
2 2
2 2
2 2
 
Sample Output
Case #1: So simple!
Case #2: So naive!
Case #3: So young!
 
Author
BJTU
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> #pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const int maxn=20000;
const int maxm=500000;
const int INF=0x3f3f3f3f; struct Edge
{
int to,next,cap,flow;
}edge[maxm]; int Size,Adj[maxn];
int gap[maxn],dep[maxn],pre[maxn],cur[maxn]; void init()
{
Size=0; memset(Adj,-1,sizeof(Adj));
} void addedge(int u,int v,int w,int rw=0)
{
edge[Size].to=v; edge[Size].cap=w; edge[Size].next=Adj[u];
edge[Size].flow=0; Adj[u]=Size++;
edge[Size].to=u; edge[Size].cap=rw; edge[Size].next=Adj[v];
edge[Size].flow=0; Adj[v]=Size++;
} int sap(int start,int end,int N)
{
memset(gap,0,sizeof(gap));
memset(dep,0,sizeof(dep));
memcpy(cur,Adj,sizeof(Adj)); int u=start;
pre[u]=-1; gap[0]=N;
int ans=0; while(dep[start]<N)
{
if(u==end)
{
int Min=INF;
for(int i=pre[u];~i;i=pre[edge[i^1].to])
if(Min>edge[i].cap-edge[i].flow)
Min=edge[i].cap-edge[i].flow;
for(int i=pre[u];~i;i=pre[edge[i^1].to])
{
edge[i].flow+=Min;
edge[i^1].flow-=Min;
}
u=start;
ans+=Min;
continue;
}
bool flag=false;
int v;
for(int i=cur[u];~i;i=edge[i].next)
{
v=edge[i].to;
if(edge[i].cap-edge[i].flow&&dep[v]+1==dep[u])
{
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag)
{
u=v;
continue;
}
int Min=N;
for(int i=Adj[u];~i;i=edge[i].next)
if(edge[i].cap-edge[i].flow&&dep[edge[i].to]<Min)
{
Min=dep[edge[i].to];
cur[u]=i;
}
gap[dep[u]]--;
if(!gap[dep[u]]) return ans;
dep[u]=Min+1;
gap[dep[u]]++;
if(u!=start) u=edge[pre[u]^1].to;
}
return ans;
}
int n,m;
int a[maxn],b[maxn]; bool vis[maxn],no[maxn];
int Stack[maxm],stk; bool dfs(int u,int pre,bool flag)
{
vis[u]=true;
Stack[stk++]=u;
for(int i=Adj[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(v==pre) continue;
if(edge[i].flow>=edge[i].cap) continue;
if(!vis[v])
{
if(dfs(v,u,edge[i^1].cap>edge[i^1].flow)) return true;
}
else if(!no[v]) return true;
}
if(flag==false)
{
while(true)
{
int v=Stack[--stk];
no[v]=true;
if(v==u) break;
}
}
return false;
} int main()
{
int T_T,cas=1;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d%d",&n,&m);
int sum1=0,sum2=0;
for(int i=1;i<=n;i++)
{
scanf("%d",a+i); sum1+=a[i];
}
for(int i=1;i<=m;i++)
{
scanf("%d",b+i); sum2+=b[i];
}
if(sum1!=sum2)
{
printf("Case #%d: So naive!\n",cas++);
continue;
}
if(sum1==sum2&&((sum1==0)||(sum1==n*m*9)))
{
printf("Case #%d: So simple!\n",cas++);
continue;
} /*************build graph*****************/
init();
for(int i=1;i<=n;i++) addedge(0,i,a[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
addedge(i,n+j,9);
for(int i=1;i<=m;i++) addedge(i+n,n+m+1,b[i]);
/*************build graph*****************/
int MaxFlow=sap(0,n+m+1,n+m+2); if(MaxFlow!=sum1)
{
printf("Case #%d: So naive!\n",cas++);
continue;
}
stk=0;
memset(vis,0,sizeof(vis));
memset(no,0,sizeof(no));
if(dfs(n+m+1,n+m+1,0))
{
printf("Case #%d: So young!\n",cas++);
}
else
{
printf("Case #%d: So simple!\n",cas++);
}
}
return 0;
}

HDOJ 4975 A simple Gaussian elimination problem.的更多相关文章

  1. HDU 4975 A simple Gaussian elimination problem.

    A simple Gaussian elimination problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be ...

  2. hdu 4975 A simple Gaussian elimination problem.(网络流,推断矩阵是否存在)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 Problem Description Dragon is studying math. One ...

  3. hdu - 4975 - A simple Gaussian elimination problem.(最大流量)

    意甲冠军:要在N好M行和列以及列的数字矩阵和,每个元件的尺寸不超过9,询问是否有这样的矩阵,是独一无二的N(1 ≤ N ≤ 500) , M(1 ≤ M ≤ 500). 主题链接:http://acm ...

  4. hdu 4975 A simple Gaussian elimination problem 最大流+找环

    原题链接 http://acm.hdu.edu.cn/showproblem.php?pid=4975 这是一道很裸的最大流,将每个点(i,j)看作是从Ri向Cj的一条容量为9的边,从源点除法连接每个 ...

  5. hdu4975 A simple Gaussian elimination problem.(正确解法 最大流+删边判环)(Updated 2014-10-16)

    这题标程是错的,网上很多题解也是错的. http://acm.hdu.edu.cn/showproblem.php?pid=4975 2014 Multi-University Training Co ...

  6. A simple Gaussian elimination problem.(hdu4975)网络流+最大流

    A simple Gaussian elimination problem. Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65 ...

  7. A simple Gaussian elimination problem.

    hdu4975:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:给你一个n*m的矩阵,矩阵中的元素都是0--9,现在给你这个矩阵的每一行和每一列的和 ...

  8. hdu4975 A simple Gaussian elimination problem.(最大流+判环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:和hdu4888基本一样( http://www.cnblogs.com/a-clown/ ...

  9. BNU 4356 ——A Simple But Difficult Problem——————【快速幂、模运算】

    A Simple But Difficult Problem Time Limit: 5000ms Memory Limit: 65536KB 64-bit integer IO format: %l ...

随机推荐

  1. 【hdu 6321】Dynamic Graph Matching

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] DP 设f[i][j]表示前i个操作,已经匹配了的点的状态集合为j的方案数 对于+操作 有两种情况. 1.这条边作为匹配的边 2.这 ...

  2. 2014年辛星解读css第三节

    第二节我们讲述的差点儿全是CSS的选择器,那么以下这一节我们来讲一下CSS的颜色和文本的一些东西,尽管我对调色不大敏感.可是对于颜色还是比較感兴趣的. *********CSS中的颜色******** ...

  3. c++:数据类型的推断type_traits

    //推断左值右值引用 void main() { int i(10);//i是左值 有内存实体 int &ri(i); int &&rri(i + 5);//右值引用 cout ...

  4. HDU 3966 Aragorn's Story 树链剖分+BIT区间修改/单点询问

    Aragorn's Story Description Our protagonist is the handsome human prince Aragorn comes from The Lord ...

  5. JAVA设计模式之【策略模式】

    策略模式 定义一些独立的类来封装不同的算法 类似于common方法或者引用类 角色 环境类Context 抽象策略Strategy 具体策略ConcreteStrategy 重构伴随着设计模式 重构类 ...

  6. ORA-1157错误解决

    一.错误描述 ORA-1157, "cannot identify/lock data file %s - see DBWR trace file" 引起的原因: 因为数据文件已经 ...

  7. vue中响应式props办法

    title: vue中响应式props办法 toc: false date: 2018-12-25 21:22:49 categories: Web tags: Vue 更新props数据时,使用th ...

  8. Ubuntu16.04+OpenCV3.2.0+Opencv_Contrib3.2.0安装

    为了学习slam,在ubuntu16.04系统上安装opencv3.2.0以及对应的opencv_contrib3.2.0 安装过程 下载 Github上下载有的时候比较慢,我这里分享了OpenCV3 ...

  9. js闭包的用途详解

    js闭包可以用在许多地方.它的最大用处有两个,一个是前面提到的可以读取函数内部的变量,另一个就是让这些变量的值始终保持在内存中 我们来看看闭包的用途.事实上,通过使用闭包,我们可以做很多事情.比如模拟 ...

  10. 【摘录】JDBC Master Slave(JDBC方式的JMS集群)

    JDBC Master Slave First supported in ActiveMQ version 4.1 If you are using pure JDBC and not using t ...