Project Euler:Problem 93 Arithmetic expressions
By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four arithmetic operations (+, −, *, /) and brackets/parentheses, it is possible to form
different positive integer targets.
For example,
8 = (4 * (1 + 3)) / 2
14 = 4 * (3 + 1 / 2)
19 = 4 * (2 + 3) − 1
36 = 3 * 4 * (2 + 1)
Note that concatenations of the digits, like 12 + 34, are not allowed.
Using the set, {1, 2, 3, 4}, it is possible to obtain thirty-one different target numbers of which 36 is the maximum, and each of the numbers 1 to 28 can be obtained before encountering
the first non-expressible number.
Find the set of four distinct digits, a < b < c < d, for which the longest set of consecutive positive integers, 1 to n, can be obtained,
giving your answer as a string: abcd.
先求出10选4的全部组合情况,保存为list
对于每一种组合都有24种排列情况
每个排列情况其运算顺序都有5种
关于四个数的运算涉及到3个操作符。并且每一个操作符理论上有四种选择:加减乘除。并将得出的整数运算结果标记出来。
终于是要比較每一种组合的标记出来的结果,从1到n都有标记的最大的那个n
def xcombination(seq,length):
if not length:
yield []
else:
for i in range(len(seq)):
for result in xcombination(seq[i+1:],length-1):
yield [seq[i]]+result def nextPermutation(self, num):
if len(num) < 2:
return num
partition = -1
for i in range(len(num) - 2, -1, -1):
if num[i] < num[i + 1]:
partition = i
break
if partition == -1:
return num[::-1]
for i in range(len(num) - 1, partition, -1):
if num[i] > num[partition]:
num[i], num[partition] = num[partition], num[i]
break
num[partition + 1:] = num[partition + 1:][::-1]
return num def ope(a,b,num):
if a==None or b==None:
return None
if num == 1:
return a+b
if num == 2:
return a-b
if num == 3:
return a*b
if num == 4:
if b == 0:
return None
else:
return a/b comb=xcombination([i for i in range(10)],4)
comb_list=list(comb)
bestprem=[0 for i in range(4)]
bestres=0
for prem in comb_list:
tmp=prem
flag=1
num_list=[0]*(9*8*7*6)
while tmp != prem or flag==1:
flag=0
for i in range(1,5):
for j in range(1,5):
for k in range(1,5):
num=ope(ope(ope(prem[0],prem[1],i),prem[2],j),prem[3],k)
if num!=None and num==int(num) and num > 0 and num < len(num_list):
num_list[int(num)]=True num=ope(ope(prem[0],ope(prem[1],prem[2],j),i),prem[3],k)
if num!=None and num==int(num) and num > 0 and num < len(num_list):
num_list[int(num)]=True num=ope(prem[0],ope(ope(prem[1],prem[2],j),prem[3],k),i)
if num!=None and num==int(num) and num > 0 and num < len(num_list):
num_list[int(num)]=True num=ope(prem[0],ope(prem[1],ope(prem[2],prem[3],k),j),i)
if num!=None and num==int(num) and num > 0 and num < len(num_list):
num_list[int(num)]=True num=ope(ope(prem[0],prem[1],i),ope(prem[2],prem[3],k),j)
if num!=None and num==int(num) and num > 0 and num < len(num_list):
num_list[int(num)]=True
count=1
while num_list[count]==True:
count=count+1 if count > bestres:
bestres=count
bestprem=prem prem=nextPermutation((),[prem[i] for i in range(4)]) print(bestres,' ',bestprem)
Project Euler:Problem 93 Arithmetic expressions的更多相关文章
- Project Euler:Problem 55 Lychrel numbers
If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindr ...
- Project Euler:Problem 63 Powerful digit counts
The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...
- Project Euler:Problem 86 Cuboid route
A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the o ...
- Project Euler:Problem 76 Counting summations
It is possible to write five as a sum in exactly six different ways: 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 ...
- Project Euler:Problem 87 Prime power triples
The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...
- Project Euler:Problem 89 Roman numerals
For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...
- Project Euler:Problem 39 Integer right triangles
If p is the perimeter of a right angle triangle with integral length sides, {a,b,c}, there are exact ...
- Project Euler:Problem 28 Number spiral diagonals
Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is forme ...
- Project Euler:Problem 47 Distinct primes factors
The first two consecutive numbers to have two distinct prime factors are: 14 = 2 × 7 15 = 3 × 5 The ...
随机推荐
- jquery中的jsonp跨域调用(接口)
jquery jsonp跨域调用接口
- 洛谷——P1352 没有上司的舞会
https://www.luogu.org/problem/show?pid=1352#sub 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树, ...
- spring boot pom
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...
- jquery outerHeight方法 outerWidth方法 获取元素实际宽度高度
曾经写代码中,每当须要获取元素的实际"宽度"(这里的宽度是指元素宽度加上其边距)时,都须要用元素宽度加上margin值才行,今天发现一个叫outerWidth(options)的方 ...
- poj_3468线段树成段更新求区间和
#include<iostream> #include<string.h> #include<cstdio> long long num[100010]; usin ...
- bzoj1066: [SCOI2007]蜥蜴(最大流)
1066: [SCOI2007]蜥蜴 题目:传送门 题解: 哇QTT大佬一眼秒算法...ORT 其实很容易就可以看出来是一道最大流 因为有边的使用限制,那么就可以直接当成是流量来处理嘛 因为是对点进行 ...
- bzoj1816: [Cqoi2010]扑克牌(二分答案判断)
1816: [Cqoi2010]扑克牌 题目:传送门 题解: 被一道毒瘤题搞残了...弃了坑来刷刷水题 一开始还想复杂了...结果发现二分水过: 二分答案...然后check一下,joker肯定尽量用 ...
- SSH Key的生成和使用(for git)
SSH Key的生成和使用 一.总结 1.用git base生成ssh,会生成id_rsa.pub文件,还有一个私钥文件. $ ssh-keygen -t rsa -C “youremailn ...
- BZOJ 2301 莫比乌斯函数+分块
思路: 同BZOJ1101 就是加个容斥 - http://blog.csdn.net/qq_31785871/article/details/54340241 //By SiriusRen #inc ...
- HttpWebRequest WebExcepton: The remote server returned an error: (407) Proxy Authentication Required.
1. Supply the credentials of the Currently Logged on User to the Proxy object similar to this: // Be ...