【链接】 我是链接,点我呀:)

【题意】

在这里输入题意

【题解】

肯定是这样
先放k-1个,然后空1个,然后再放k-1个。然后再空1个。。
以此类推。

然后如果(n/k)*(k-1)+n%k>=m的话

那么答案显然就是m,因为不会出现乘2的情况。

否则。

那么只能让某些位置乘2了。

那么什么地方乘呢?

肯定是越前面越早乘越好。

那么temp=m-((n/k)*(k-1)+n%k)就是需要多乘2的次数。

从左往右放入那n/k个空位置中的前temp个就好

然后会发现前temp个连续的k块的递推式

\(a_n=2*(a_{n-1}+k)\)

其中\(a_1=2*k\)

(我在处理的时候把k提取出来了,最后又乘上个k就好

用高中学的构造方法可以得到an的通项公式为

\(an=k(4*2^{n-1}-2)\)

然后把剩下的n/k-temp个k-1块加上去再加上n%k就是答案了

(2的次方那里要写快速幂

【代码】

#include <bits/stdc++.h>
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define all(x) x.begin(),x.end()
#define pb push_back
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
using namespace std; const double pi = acos(-1);
const int dx[4] = {0,0,1,-1};
const int dy[4] = {1,-1,0,0}; LL n,m,k; const LL MOD = 1e9 + 9; // 模数
LL Pow(LL x,LL y){ //求x^y
LL a = 1;x%=MOD;
while (y){
if (y&1) a = (a*x)%MOD;
x=(x*x)%MOD;
y>>=1;
}
return a;
} int main(){
#ifdef LOCAL_DEFINE
freopen("rush_in.txt", "r", stdin);
#endif
ios::sync_with_stdio(0),cin.tie(0);
cin >> n >> m >> k;
LL temp = (n/k)*(k-1) + n%k;
if (m<=temp){
cout<<m<<endl;
}else{
LL temp1 = m-temp;
//还剩n/k个位置
LL ans = 0;
ans+=4*Pow(2,temp1-1)-2;
ans%=MOD;
ans*=k;
ans%=MOD;
ans+=((n/k - temp1)*(k-1)+n%k);
ans%=MOD;
cout<<ans<<endl;
}
return 0;
}

【Henu ACM Round#24 C】Quiz的更多相关文章

  1. 【Henu ACM Round#24 E】Connected Components

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 要求把连续的一段li..ri的边全都删掉. 然后求剩下的图的联通数 如果暴力的话 复杂度显然是O(k*m)级别的. 考虑我们把li. ...

  2. 【Henu ACM Round#24 D】Iterated Linear Function

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 把B提取出来就是一个等比数列了. 求和一下会发现是这种形式. \(B*\frac{(A^n-1)}{A-1}+A^n*x\) 则求一 ...

  3. 【Henu ACM Round#24 B】Gargari and Bishops

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 如果写过n皇后问题. 肯定都知道 某个点(i,j)和它在同一条对角线上的点分别是i+j的值和i-j的值相同的点. 然后会发现选择的两 ...

  4. 【Henu ACM Round#24 A】k-String

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 如果是一个k-string的话. 考虑最后的串假设形式为sss..ss(k个s) 则s中出现的字母,整个串中最后出现的次数肯定为k的 ...

  5. 【Henu ACM Round#15 F】Arthur and Questions

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] a1+a2+...+ak<a2+a3+...ak+1 ->a1<ak+1 a2+a3+...+ak+1<a3 ...

  6. 【Henu ACM Round#16 F】Om Nom and Necklace

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] KMP算法可以把"i前缀"pre[i] 分成ssssst的形式 这里t是s的前缀. 然后s其实就是pre[i]中 ...

  7. 【Henu ACM Round#16 E】Paths and Trees

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 感觉很像一道最短路. 然后就试了一发. 结果真的是.. 只要用一个优先队列优化的dijkstra算法求出每个点的最短路上的前一个点是 ...

  8. 【Henu ACM Round#18 F】Arthur and Walls

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 考虑,为什么一个连通块里面的空格没有变成一个矩形? 如果不是形成矩形的话. 肯定是因为某个2x2的单张方形里面. 只有一个角是墙.其 ...

  9. 【Henu ACM Round#17 F】Upgrading Array

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 如果我们对某一个位置i操作两次的话. 显然结果就和操作一次一样. 因为第一次操作过后1..i这些数字就变成是互质的了. gcd为1. ...

随机推荐

  1. Vue学习之路第七篇:跑马灯项目实现

    前面六篇讲解了Vue的一些基础知识,正所谓:学以致用,今天我们将用前六篇的基础知识,来实现类似跑马灯的项目. 学前准备: 需要掌握定时器的两个函数:setInterval和clearInterval以 ...

  2. 中国剩余定理(excrt) 模板

    excrt板子题 #include <cmath> #include <cstdio> #include <cstring> #include <algori ...

  3. Swoole 源码分析——进程管理 Swoole_Process

    前言 swoole-1.7.2 增加了一个进程管理模块,用来替代 PHP 的 pcntl 扩展. PHP自带的pcntl,存在很多不足,如 pcntl 没有提供进程间通信的功能 pcntl 不支持重定 ...

  4. Redis:基础知识及其常用数据类型和关键字

    Redis: Redis是什么: REmote DIctionary Server(远程字典服务器) 是完全开源免费的,用C语言编写的,遵守BSD协议,是一个高性能的(Key-Value)分布式内存数 ...

  5. 循环语句第1种 LOOP ... END LOOP;

     7)循环语句  --------第1种----------   LOOP ... END LOOP;    declare    n number(3) := 1;  begin    LOOP   ...

  6. IntegerToBinaryString

    IntegerToBinaryString 方法写的非常的巧妙:佩服佩服! package com.stono.jdk; public class IntegerToBinaryString { pu ...

  7. iOS开发自己定义键盘回车键Return Key

    在iOS开发中.用户在进行文本输入的时候,往往会用到虚拟键盘上的回车键,也就是Return Key.回车键有时候能够是"完毕"(表示输入结束).能够是"下一项" ...

  8. java mail邮件发送(带附件) 支持SSL

    java mail邮件发送(带附件)有三个类 MailSenderInfo.java package mail; import java.util.Properties; import java.ut ...

  9. 【LeetCode-面试算法经典-Java实现】【145-Binary Tree Postorder Traversal(二叉树非递归后序遍历)】

    [145-Binary Tree Postorder Traversal(二叉树非递归后序遍历)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a bin ...

  10. 一题多解(一) —— list(Python)判空(以及 is 与 == 的区别)

    >> l = [] 1. == >> l == [] True 2. not >> not l True 3. 注意 is 与 == 的区别 >> l ...