题目大意:两个人从2~n中随意取几个数(不取也算作一种方案),被一个人取过的数不能被另一个人再取。两个人合法的取法是,其中一个人取的任何数必须与另一个人取的每一个数都互质,求所有合法的方案数

(数据范围毕竟很小,乍一看也不是啥打表找规律的题)

和我之前做过的一道题很类似hdu 6125,但这道题由于题面看起来很玄学,所以正解更难想

但还是 状压DP+分组背包 的套路

因为500以内的任何一个数,只会有一个大于19的质因子,所以对2 3 5 7 11 13 17 19这8个质数进行状压,然后每个数都质因数分解,把小于等于19的质因子存入状态,剩下的因子分组背包搞搞就行了,注意如果剩下的因子是1要单独算一组,否则会出大事情,比如2和3并不是同一组的,如果再来一个4,和2是同一组的,转移就会出错

具体DP的实现呢,定义是第一个人取了状态为s1的数,第二个人取了状态为s2的数

分组背包要把同一组的东西放到连续的一段序列上

对于这道题而言,如果某个人取了某一组的任何一个,那么这一组的其它物品也只能被这个人取/不取

所以额外定义两个状态f1,f2,含义和dp的意义是一样的,只不过在同一组内是f1和f2这两个状态自己和自己转移,然后把答案贡献给dp,即这一组对整体的贡献,然后把dp重新赋给f1,f2,再进行下一组背包

方程   

由于f1,f2为了下一层转移,都被加了一次dp值,所以最后要减掉一个dp

而f1,f2转移也有技巧,常规的自己和自己转移为了避免传递性,要另外开一个数组进行转移。但因为这道题的转移方程都是位与|操作,具有递增性,所以倒序枚举就可以减少一些常数

 #include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ui unsigned int
#define ll long long
#define il inline
#define N (1<<8)+3
#define inf 0x3f3f3f3f
using namespace std; int n;
ll p;
ll f1[N][N],f2[N][N],dp[N][N];
int pr[]={,,,,,,,};
struct node{
int w,f;
friend bool operator < (const node &a,const node &b){
if(a.w!=b.w) return a.w<b.w;
else return a.f<b.f;
}
}s[N];
void get_son()
{
for(int i=;i<=n;i++)
{
int x=i;
for(int j=;j<;j++)
{
if(x%pr[j]==) x/=pr[j],s[i].f|=(<<j);
while(x%pr[j]==) x/=pr[j];
}s[i].w=x;
}
} int main()
{
scanf("%d%lld",&n,&p);
get_son();
sort(s+,s+n+);
f1[][]=f2[][]=dp[][]=;
int m=(<<)-;
for(int i=;i<=n;i++)
{
for(int s1=m;s1>=;s1--)
for(int s2=m;s2>=;s2--){
if(!((s1|s[i].f)&s2)) f1[s1|s[i].f][s2]=(f1[s1|s[i].f][s2]+f1[s1][s2])%p;
if(!(s1&(s2|s[i].f))) f2[s1][s2|s[i].f]=(f2[s1][s2|s[i].f]+f2[s1][s2])%p;}
if(s[i].w==||s[i+].w!=s[i].w)
for(int s1=m;s1>=;s1--)
for(int s2=m;s2>=;s2--)
f1[s1][s2]=f2[s1][s2]=dp[s1][s2]=(f1[s1][s2]+f2[s1][s2]-dp[s1][s2]+p)%p;
}
ll ans=;
for(int s1=m;s1>=;s1--)
for(int s2=m;s2>=;s2--)
ans+=dp[s1][s2],ans%=p;
printf("%lld\n",ans);
return ;
}

NOI 2015 寿司晚宴 (状压DP+分组背包)的更多相关文章

  1. BZOJ 4197 NOI 2015 寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...

  2. NOIP模拟 乘积 - 状压dp + 分组背包

    题目大意: 给出n和k,求从小于等于n的数中取出不超过k个,其乘积是无平方因子数的方案数.无平方因子数:不能被质数的平方整除. 题目分析: 10(枚举\(n\le8\)),40(简单状压\(n\le1 ...

  3. HDU - 6125: Free from square (状压DP+分组背包)

    problem:给定N,K.表示你有数1到N,让你最多选择K个数,问有多少种方案,使得选择的数的乘积无平方因子数.N,K<500: solution:显然可以状压DP做,但是500以内的素数还是 ...

  4. 【BZOJ-4197】寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...

  5. [NOI2015]寿司晚宴 --- 状压DP

    [NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...

  6. 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

    [BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...

  7. B4197 [Noi2015]寿司晚宴 状压dp

    这个题一开始想到了唯一分解定理,然后状压.但是显然数组开不下,后来想到每个数(n<500)大于19的素因子只可能有一个,所以直接单独存就行了. 然后正常状压dp就很好搞了. 题干: Descri ...

  8. [NOI2015]寿司晚宴——状压dp

    题目转化:将2~n的数分成两组,可以不选,使得这两组没有公共的质因子.求方案数. 选择了一个数,相当于选择了它的所有质因子. 30分: 发现,n<=30的时候,涉及到的质因子也就10个.2,3, ...

  9. [NOI2015][bzoj4197] 寿司晚宴 [状压dp+质因数]

    题面 传送门 思路 首先,要让两个人选的数字全部互质,那么有一个显然的充要条件:甲选的数字的质因数集合和乙选的数字的质因数集合没有交集 30pt 这种情况下n<=30,也就是说可用的质数只有10 ...

随机推荐

  1. 当li设置为line-block时,元素之间出现间隙的原因和解决方法

    原因 因为浏览器默认把inline元素之间的空白符(Tab.空格.换行)渲染成一个空格.而如下述代码,两个li元素之间的换行符被渲染成一个空格,则元素之间产生了间隙. 用Chrome浏览器将场景模拟出 ...

  2. Tarjan算法 (强联通分量 割点 割边)

    变量解释: low 指当前节点在同一强连通分量(或环)能回溯到的dfn最小的节点 dfn 指当前节点是第几个被搜到的节点(时间戳) sta 栈 vis 是否在栈中 ans 指强连通分量的数量 top ...

  3. MySQL导入到SQLServer

    Mysql是在Linux环境服务器,MSSQL在windows服务器上 1.在MSServer中安装VPN 2.为VPN配置Mysql服务器账号 3.账号中的文件 4.在MSSQL服务器上安装mysq ...

  4. 最小割Stoer-Wagner算法

    最小割Stoer-Wagner算法 割:在一个图G(V,E)中V是点集,E是边集.在E中去掉一个边集C使得G(V,E-C)不连通,C就是图G(V,E)的一个割: 最小割:在G(V,E)的所有割中,边权 ...

  5. java cocurrent包

    1. java.util.concurrent - Java 并发工具包 Java 5 添加了一个新的包到 Java 平台,java.util.concurrent 包.这个包包含有一系列能够让 Ja ...

  6. [Node.js] Proxy Requests for Local and Remote Service Parity

    High availability apps require that no distinction be made between local and remote services. Attach ...

  7. ios-UI-汤姆猫德游戏实现

    // //  ViewController.m //  UI-猜拳游戏 // //  Created by jzq_mac on 15/7/15. //  Copyright (c) 2015年 jz ...

  8. How to remove focus without setting focus to another control?

    How to remove focus without setting focus to another control? Ask Question up vote 67 down vote favo ...

  9. Pocket英语语法---六、感官动词接不同的动词表示什么意思

    Pocket英语语法---六.感官动词接不同的动词表示什么意思 一.总结 一句话总结:其实进行时一般是表示连续,动词原形一般表示常态,过去分词一般表示被动(或者完成). 感官动词接原型表示动作的一般情 ...

  10. AngularJS 下拉列表demo

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <script sr ...