poj 2931 Building a Space Station <克鲁斯卡尔>
Time Limit: 1000MS |
Memory Limit: 30000K |
|
Total Submissions: 5869 |
Accepted: 2910 |
Description
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is
quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.
All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or
(3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.
You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least
three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with
the shortest total length of the corridors.
You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form
a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.
Input
n
x1 y1 z1 r1
x2 y2 z2 r2
...
xn yn zn rn
The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.
The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after
the decimal point. Values are separated by a space character.
Each of x, y, z and r is positive and is less than 100.0.
The end of the input is indicated by a line containing a zero.
Output
Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.
Sample Input
3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0
Sample Output
20.000
0.000
73.834
Source
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int n;
double x[105];
double y[105];
double z[105];
double r[105];
int pre[105];
struct node
{
int u,v;
double w;
}map[10005];
int cmp(node a,node b)
{
return a.w<b.w;
}
void init()
{ }
int find(int x)
{
int r=x;
while(r!=pre[r])
{
r=pre[r];
}
int i,j;
i=x;
while(i!=r)
{
j=pre[i];
pre[i]=r;
i=j;
}
return r;
}
int join(int x,int y)
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
{
pre[fx]=fy;
return 1;
}
return 0;
}
int main()
{ while(scanf("%d",&n)&&n)
{
for(int i=1;i<=101;i++)
{
pre[i]=i;
} for(int i=1;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&x[i],&y[i],&z[i],&r[i]);
}
int t=0;
double d;
for(int i=1;i<n;i++)
{
for(int j=i+1;j<=n;j++)
{
t++;
map[t].u=i;
map[t].v=j;
d=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])+(z[i]-z[j])*(z[i]-z[j]));//三维坐标求距离! if(d<(r[i]+r[j]))//这一点须要特殊粗粒
map[t].w=0;
else
map[t].w=d-(r[i]+r[j]);
}
}
sort(map+1,map+t+1,cmp);
double sum=0;
for(int i=1;i<=t;i++)
{
if(join(map[i].u,map[i].v))
{
sum+=map[i].w;
}
}
printf("%.3f\n",sum);//注意输出的时候,这一道 题有个坑。就是必须用%f输出!
}
return 0;
}
poj 2931 Building a Space Station <克鲁斯卡尔>的更多相关文章
- poj 2031 Building a Space Station【最小生成树prime】【模板题】
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5699 Accepte ...
- POJ 2031 Building a Space Station【经典最小生成树】
链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 2031 Building a Space Station
3维空间中的最小生成树....好久没碰关于图的东西了..... Building a Space Station Time Limit: 1000MS Memory Li ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5173 Accepte ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...
- POJ - 2031 Building a Space Station 三维球点生成树Kruskal
Building a Space Station You are a member of the space station engineering team, and are assigned a ...
- POJ 2031 Building a Space Station (计算几何+最小生成树)
题目: Description You are a member of the space station engineering team, and are assigned a task in t ...
- POJ - 2031C - Building a Space Station最小生成树
You are a member of the space station engineering team, and are assigned a task in the construction ...
- POJ 2031 Building a Space Station【最小生成树+简单计算几何】
You are a member of the space station engineering team, and are assigned a task in the construction ...
随机推荐
- Codeforces 19E 树上差分
思路: 先随便建出来一棵搜索树(图可能不连通?) 每一条非树边(剩下的边)和树边都可以构成一个环. 我们只看一个非树边和某些树边构成的这些环. 分成三种情况: 1.没有奇环 所有边都可以删 2.有一 ...
- 【POJ3255/洛谷2865】[Usaco2006 Nov]路障Roadblocks(次短路)
题目: POJ3255 洛谷2865 分析: 这道题第一眼看上去有点懵-- 不过既然要求次短路,那估计跟最短路有点关系,所以就拿着优先队列优化的Dijkstra乱搞,搞着搞着就通了. 开两个数组:\( ...
- python爬虫之处理验证码
云打码实现处理验证码 处理验证码,我们需要借助第三方平台来帮我们处理,个人认为云打码处理验证码的准确度还是可以的 首先第一步,我们得先注册一个云打码的账号,普通用户和开发者用户都需要注册一下 然后登陆 ...
- Java——Spring配置
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- drupal 8 ——自定义权限
在项目开发里面,我遇到了这么一个需求,就是对于node的title字段,编辑内容的角色不允许对title进行编辑.title字段是创建内容类型时自动生成的字段,不能在drupal8后台直接配置权限,所 ...
- Android开发之ThreadLocal原理深入理解
[Android]ThreadLocal的定义和用途 ThreadLocal用于实现在不同的线程中存储线程私有数据的类.在多线程的环境中,当多个线程需要对某个变量进行频繁操作,同时各个线程间不需要同步 ...
- html——ico
下载: 网址+/favicon.ico 引用: 1.<link href="favicon.ico" rel="icon" /> 2.<lin ...
- java攻城狮之路--复习xml&dom_pull编程续
本章节我们要学习XML三种解析方式: 1.JAXP DOM 解析2.JAXP SAX 解析3.XML PULL 进行 STAX 解析 XML 技术主要企业应用1.存储和传输数据 2.作为框架的配置文件 ...
- 12--c完数/最大公约数/最小公倍数/素数/回文数
完数/最大公约数/最小公倍数/素数/回文数 2015-04-08 10:33 296人阅读 评论(0) 收藏 举报 分类: C/C++(60) 哈尔滨工业大学(8) 版权声明:本文为博主原创文章 ...
- vue中fetch请求
1. 请求方式:get 请求参数:menuName 返回的结果:data created(){ this._initPageData() }, methods:{ _initPageData(){ f ...