主要内容:

一.降维与PCA

二.PCA算法过程

三.PCA之恢复

四.如何选取维数K

五.PCA的作用与适用场合

一.降维与PCA

1.所谓降维,就是将数据由原来的n个特征(feature)缩减为k个特征(可能从n个中直接选取k个,也能根据这n个重新组合成k个)。可起到数据压缩的作用(因而也就存在数据丢失)。

2.PCA,即主成分分析法,属于降维的一种方法。其主要思想就是:根据原始的n个特征(也就是n维),重新组合出k个特征,且这k个特征能最大量度地涵盖原始的数据信息(虽然会导致信息丢失)。有一个结论:当某一维的方差越大时,其所包含的信息量也越大,表明其越重要;反之则反。所以,PCA的主要工作就是:重构出k个特征,使其所包含的信息量最大。

3.以下两个例子:

第一幅图:将平面上(二维)的点映射到一直线或向量上(一维),其丢失的信息量就是:每个点到直线上的距离。因为降维之后,就认为所有点都在直线上了。同理第二幅图将空间上投影到一个平面上。注意:这两个例子都选取了与原始数据尽可能“靠近”的直线或者平面,使得其保存下来的信息量最大。

二.PCA算法过程

1.首先,需要对数据特征进行归一化

2.求出特征的协方差矩阵

3.求出协方差矩阵的特征值及特征向量,这里可直接调用函数库

其中,S为对角矩阵,其对角线上的数就是协方差矩阵的特征值,而U就是协方差矩阵的特征向量。

而U的前k列就是我们要求的新特征(用于代替原来的n个特征,起到数据压缩的作用)。

所以,假设原始的数据特征为x(n维),经过用变换后变为z(k维),则有如下公式:

综上,PCA算法可总结为:

 注:至于为什么要用到协方差矩阵,以及为什么要求特征向量等等一系列数学问题,这篇博客:PCA算法原理:为什么用协方差矩阵 可以很好地解释。

(自己还没看懂,只有个感性的认识)

三.PCA之恢复

1.对人脸图像进行降维压缩的效果如下:

            (这里只取了部分)

2.那么压缩后,是否可以再还原了?是可以的,只是在压缩时丢失的那部分数据找不回来了。恢复方式如下:

即:X(approx) = U(reduce) * Z

由图像可知:恢复后,所有的点后落在了直线上,所以丢失的数据即为原始点与直线的距离。

四.如何选取维数K

如果可能,k当然越小越好,k越小表明压缩的程度越高,但同时又要保证足够多的数据量。因此,选出最小的k,满足:

以下为其求解求解过程,并且我们可以直接调用函数库:

五.PCA的作用与适用场合

1.PCA用甚好好处?或者说有哪些应用?

1) 可以减少内存空间

2) 可以对算法进行提速

3) 可以用于数据可视化

2.既然PCA这么好用?那是不是可以随便用呢?答案否:

个人认为,PCA其实是个辅助工具,用不用它,从功能上而言没有太大区别,其区别就在于性能。也就是说,在用线性回归或者Logistic回归做一些事情时,如果直接运行,其效果或者说性能都比价可观了,那就无谓使用PCA了。当出现占用内存过大,或者运算时间过长等,这时就可以利用PCA来提升一下算法的性能了。

吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA)的更多相关文章

  1. [吴恩达机器学习笔记]14降维5-7重建压缩表示/主成分数量选取/PCA应用误区

    14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.5重建压缩表示 Reconstruction from Compressed Representation 使用PCA,可以把 ...

  2. [吴恩达机器学习笔记]14降维3-4PCA算法原理

    14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.3主成分分析原理Proncipal Component Analysis Problem Formulation 主成分分析( ...

  3. 吴恩达机器学习笔记(六) —— 支持向量机SVM

    主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...

  4. [吴恩达机器学习笔记]12支持向量机5SVM参数细节

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...

  5. [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...

  6. [吴恩达机器学习笔记]12支持向量机2 SVM的正则化参数和决策间距

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin I ...

  7. [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...

  8. [吴恩达机器学习笔记]11机器学习系统设计3-4/查全率/查准率/F1分数

    11. 机器学习系统的设计 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 11.3 偏斜类的误差度量 Error Metr ...

  9. Coursera-AndrewNg(吴恩达)机器学习笔记——第三周

    一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:&quo ...

随机推荐

  1. &和|不等同于&&或||

    &:位与 |:位或 &&:与 ||:或 当C编译器遇到这些符号时,会怎么样了? 当一个&或| 对位进行运算. 当二个&&或||对它进行与或运算. 千万不 ...

  2. 以前整理的网络上免费API接口

    以前整理的一些免费的API接口,具体是否好用还需要时间测试,但是先分享给大家. 天气接口 聚合数据: http://op.juhe.cn/onebox/weather/query 用例 官方文档 来源 ...

  3. IIS配置asp.net网站

    http://wenku.baidu.com/view/f8ce6c14767f5acfa0c7cd36.html

  4. java与javax有什么区别?

    http://zhidao.baidu.com/question/8702158.html java和javax都是Java的API包,java是核心包,javax的x是extension的意思,也就 ...

  5. svn自动部署

    版本库目录hooks下创建post-commit.bat TortoiseProc.exe /command:update /path:"E:\web_server\sial\" ...

  6. 设计模式之Visitor模式(笔记)

    訪问者模式:表示一个作用于某个对象结构中的各元素操作.它使你能够不改变各元素的类的前提下定义作用于这些元素的新操作. 首先定义一个visitor抽象类,为每一个详细类声明一个visit操作 publi ...

  7. Two stage U-Boot design

    In AM335x the ROM code serves as the bootstrap loader, sometimes referred to as the Initial Program ...

  8. selenium3 踩坑--move_to_element()报错

    问题:selenium3 使用move_to_element()报错,报错信息如下图所示: 网上没有找到合适的解决办法,回退到稳定的selenium2可以解决. pip install seleniu ...

  9. IdentityServer4 + SignalR Core +RabbitMQ 构建web即时通讯(二)

    IdentityServer4 + SignalR Core +RabbitMQ 构建web即时通讯(二) IdentityServer4 用户中心生成数据库 上文已经创建了所有的数据库上下文迁移代码 ...

  10. 【PHP开发】远程文件(图片)下载

    这一篇文章介绍的方法不算原创了,只是引用的别人的文章,加上自己的注释,因为接触php时间不长,所以尝试的东西比较多,自己加的注释也比较简单,php高手请略过. 我要用到远程下载图片,是在做微信公众平台 ...