Manacher's Algorithm 马拉车算法(最长回文串)
这个马拉车算法Manacher‘s Algorithm是用来查找一个字符串的最长回文子串的线性方法,由一个叫Manacher的人在1975年发明的,这个方法的最大贡献是在于将时间复杂度提升到了线性,这是非常了不起的。对于回文串想必大家都不陌生,就是正读反读都一样的字符串,比如 "bob", "level", "noon" 等等,那么如何在一个字符串中找出最长回文子串呢,可以以每一个字符为中心,向两边寻找回文子串,在遍历完整个数组后,就可以找到最长的回文子串。但是这个方法的时间复杂度为O(n*n),并不是很高效,下面我们来看时间复杂度为O(n)的马拉车算法。
由于回文串的长度可奇可偶,比如"bob"是奇数形式的回文,"noon"就是偶数形式的回文,马拉车算法的第一步是预处理,做法是在每一个字符的左右都加上一个特殊字符,比如加上'#',那么
bob --> #b#o#b#
noon --> #n#o#o#n#
这样做的好处是不论原字符串是奇数还是偶数个,处理之后得到的字符串的个数都是奇数个,这样就不用分情况讨论了,而可以一起搞定。接下来我们还需要和处理后的字符串t等长的数组p,其中p[i]表示以t[i]字符为中心的回文子串的半径,若p[i] = 1,则该回文子串就是t[i]本身,那么我们来看一个简单的例子:
# 1 # 2 # 2 # 1 # 2 # 2 #
1 2 1 2 5 2 1 6 1 2 3 2 1
由于第一个和最后一个字符都是#号,且也需要搜索回文,为了防止越界,我们还需要在首尾再加上非#号字符,实际操作时我们只需给开头加上个非#号字符,结尾不用加的原因是字符串的结尾标识为'\0',等于默认加过了。通过p数组我们就可以找到其最大值和其位置,就能确定最长回文子串了,那么下面我们就来看如何求p数组,需要新增两个辅助变量mx和id,其中id为最大回文子串中心的位置,mx是回文串能延伸到的最右端的位置,这个算法的最核心的一行如下:
p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1;
可以这么说,这行要是理解了,那么马拉车算法基本上就没啥问题了,那么这一行代码拆开来看就是
如果mx > i, 则 p[i] = min(p[2 * id - i], mx - i)
否则, p[i] = 1
当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。
当 P[j] >= mx - i 的时候,以S[j]为中心的回文子串不一定完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx - i。至于mx之后的部分是否对称,就只能老老实实去匹配了。
对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了。
参见如下实现代码:

#include <vector>
#include <iostream>
#include <string> using namespace std; string Manacher(string s) {
// Insert '#'
string t = "$#";
for (int i = 0; i < s.size(); ++i) {
t += s[i];
t += "#";
}
// Process t
vector<int> p(t.size(), 0);
int mx = 0, id = 0, resLen = 0, resCenter = 0;
for (int i = 1; i < t.size(); ++i) {
p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1;
while (t[i + p[i]] == t[i - p[i]]) ++p[i];
if (mx < i + p[i]) {
mx = i + p[i];
id = i;
}
if (resLen < p[i]) {
resLen = p[i];
resCenter = i;
}
}
return s.substr((resCenter - resLen) / 2, resLen - 1);
} int main() {
string s1 = "12212";
cout << Manacher(s1) << endl;
string s2 = "122122";
cout << Manacher(s2) << endl;
string s = "waabwswfd";
cout << Manacher(s) << endl;
}

Manacher's Algorithm 马拉车算法(最长回文串)的更多相关文章
- Manacher算法,最长回文串
给你10000长度字符串,然你求最长回文字串,输出长度,暴力算法肯定超时 #include <iostream> #include <string> #include < ...
- Manacher's Algorithm 马拉车算法
这个马拉车算法Manacher‘s Algorithm是用来查找一个字符串的最长回文子串的线性方法,由一个叫Manacher的人在1975年发明的,这个方法的最大贡献是在于将时间复杂度提升到了线性,这 ...
- Manacher's Algorithm 马拉车算法(求最长回文串)
作用:求一个字符串中的最长子串,同时还可以求所有子串的长度. 题目链接: https://vjudge.net/contest/254692#problem/B 最长回文串长度的代码: int Man ...
- Manacher算法——最长回文子串
一.相关介绍 最长回文子串 s="abcd", 最长回文长度为 1,即a或b或c或d s="ababa", 最长回文长度为 5,即ababa s="a ...
- hdu 3068 最长回文 (Manacher算法求最长回文串)
参考博客:Manacher算法--O(n)回文子串算法 - xuanflyer - 博客频道 - CSDN.NET 从队友那里听来的一个算法,O(N)求得每个中心延伸的回文长度.这个算法好像比较偏门, ...
- Manacher算法 - 求最长回文串的利器
求最长回文串的利器 - Manacher算法 Manacher主要是用来求某个字符串的最长回文子串. 不要被manacher这个名字吓倒了,其实manacher算法很简单,也很容易理解,程序短,时间复 ...
- 字符串的最长回文串:Manacher’s Algorithm
题目链接:Longest Palindromic Substring 1. 问题描述 Given a string S, find the longest palindromic substring ...
- manacher 算法(最长回文串)
manacher算法: 定义数组p[i]表示以i为中心的(包含i这个字符)回文串半径长 将字符串s从前扫到后for(int i=0;i<strlen(s);++i)来计算p[i],则最大的p[i ...
- HDU 3068 最长回文 (Manacher最长回文串)
Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.回文就是正反读都是一样的字符串,如aba, abba等 Input 输 ...
随机推荐
- winform学习
1:http://www.cnblogs.com/yieryi/category/704334.html 系列文章 2:http://www.easyicon.net/iconsearch/login ...
- function declarations are hoisted and class declarations are not 变量提升
Classes - JavaScript | MDN https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes ...
- SASL mechanism
<property> <name>hive.spark.client.rpc.sasl.mechanisms</name> <value>DIGEST- ...
- 在tomcat下直接访问Html报错,说找不到资源(404)
今天由于工作需要,想把一个html直接放到tomcat(干净的tomcat,没有做过任何修改.)下进行访问,然后根据经验就直接在webapps下创建了个文件夹test,然后把需要的test.html拷 ...
- jquery .html(),.text(),.val()用法
.html()用为读取和修改元素的HTML标签 .text()用来读取或修改元素的纯文本内容 .val()用来读取或修改表单元素的value值. 这三个方法功能上的对比 .html(),.text() ...
- Java for LeetCode 112 Path Sum
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...
- 20145239杜文超 实验五 Java网络编程
20145239 实验五 Java网络编程 实验内容 组队,一人服务器,一人客户端. 下载加解密代码,先编译运行代码,一人加密一人解密,适当修改代码. 然后集成代码,一人加密后通过TCP发送,加密使用 ...
- LightOJ - 1248 Dice (III) —— 期望
题目链接:https://vjudge.net/problem/LightOJ-1248 1248 - Dice (III) PDF (English) Statistics Forum Tim ...
- Dubbo动态负载均衡(socket环境实现)
消费者 去注册中心获取信息 然后缓存到本地 如果有生产者某个服务宕机了 会通过通知的方式告知 (订阅的方式) 微服务rpc远程调用框架中,服务的负载均衡都是采用本地负载均衡的,Spring Clou ...
- 51nod 1737配对
题意:给定一个n个点的带边权树, 保证n是偶数,给这个树两两配对,使得配对后的点路径和最大,输出最大值. 其实是个很简单的题,但还是被绊了.这充分说明现在连简单题都做不来了555 单独考虑每条边.每 ...