CODECHEF Oct. Challenge 2014 Children Trips
@(XSY)[分塊, 倍增]
Description
There's a new trend among Bytelandian schools. The "Byteland Touristic Bureau" has developed a new project for the high-schoolers. The project is so-called "Children's Trips".
The project itself is very simple: there are some touristic routes in Byteland, and N touristic campuses (numbered from 1 to N). For the sake of economy, there are exactly N-1 road between them. Of course, even having this given, it is possible to travel from any touristic campus to any other one. Moreover, for the sake of safety, each road is no longer than 2 kilometers.
When some student wants to travel, he first chooses his starting campus - he is been delivered there (say) by a helicopter. He chooses his final destination campus as well. From his final destination, he will be transported to his home by (say) a helicopter, again. So that pupil won't travel any extra distance by foot. When the start and the finish are chosen and the pupil is delivered, he starts his moving by the only route. None of pupils is infinitely strong, so first the pupil looks at the map of the touristic routes, and then he chooses the furthest campus on his way that he can reach during the current day (by safety regulations, it is strictly prohibited to sleep not at the campus because there can be a little trouble with werewolves), and moves there. Then the new day begins, and it repeats till the moment when the destination is reached.
Of course, not all the students created equal. Somebody is good in math, somebody in English, somebody in PE. So it's quite natural that all high-schoolers has different strengths.
We call the strength is the maximal number of kilometers that the pupil can pass in a day. And now you're given a lot of queries from the children. For every query, you are given the starting campus, the final campus and the strength. You are requested to calculate the number of days for every trip. The map of the campuses and the distances between them will be given to you as well.
Input
The first line of input contains the integer \(N\), denoting the number of campuses.
The next \(N-1\) lines contain triples of the form \(X\) \(Y\) \(D\) with the meaning that there is a road between the X-th and the Y-th campus with the length \(D\) kilometers.
Then there is a line with a single integer \(M\), denoting the number of queries.
Then, there are \(M\) lines with the triples of the form \(S\) \(F\) \(P\) with the meaning that the trip starts at the campus \(S\), ends at the campus \(F\) and the student has the strength of \(P\).
For every query, please output the number of days on a separate line.
Constraints
$1 ≤ N, M ≤ 100000$
$1 ≤ X, Y, S, F ≤ N$
$1 ≤ D ≤ 2$
$2 ≤ P ≤ 2*N$
##Example
###Input:
```dos
5
1 2 1
2 3 2
1 4 2
4 5 1
5
1 5 3
1 3 2
2 5 4
1 2 10
4 5 2
```
###Output:
```dos
1
2
1
1
1
```
##Solution
翻譯一下題意:
>有一棵每条边的边权分别为$1$或$2$的共有$n$个节点的树, 对于一个询问, 给出起点$u$和终点$v$, 以及每一天最多走的路程$k$. 规定每天的结束点必须在树的节点上, 问最少要几天走完所有路程.
由於邊的權值只能為$1$或$2$, 因此可以考慮採用時間複雜度帶根號的算法.
>对$p$分情况进行讨论
>1. $p \ge \sqrt{n}$
>最多总共走$\sqrt{n}$天, 对于每一天倍增最远可以走到哪里即可, 并统计走的天数.
>2. $p \le sqrt(n)$
>对于每次询问的$p$, 暴力求出从每个点出发, 最多走$p$距离最远可以到达的最远位置. 再用倍增求出$f[i][j]$数组, 表示从点$i$出发, 走$2 ^ j$天可以到达的最远位置. 最后跑一次倍增解决.
>注意在进行这种计算之前, 先要将$p$从小到大排序. 这样每次计算就可以省去之前已经进行过的部分. 同时, 对于两个相同的$p$值, 不要重复求$f$数组, 否则会超时.
>时间复杂度$O \left( n * \sqrt{n} * log(n) \right)$
```cpp
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
inline int read()
{
int x = 0, flag = 1;
char c;
while(! isdigit(c = getchar()))
if(c == '-')
flag *= - 1;
while(isdigit(c))
x = x * 10 + c - '0', c = getchar();
return x * flag;
}
void println(int x)
{
if(x < 0)
putchar('-'), x *= - 1;
if(x == 0)
putchar('0');
int ans[1 << 5], top = 0;
while(x)
ans[top ++] = x % 10, x /= 10;
for(; top; top --)
putchar(ans[top - 1] + '0');
putchar('\n');
}
const int N = 1 << 17, M = 1 << 17;
int n;
int head[N];
int top;
struct edge
{
int v, w, next;
}G[N << 1];
inline void addEdge(int u, int v, int w)
{
G[top].v = v, G[top].w = w, G[top].next = head[u];
head[u] = top ++;
}
struct data
{
int u, dis;
}st[N][17];
int dep[N];
int disToRoot[N];
void dfs(int u, int pre, int w)
{
st[u][0].u = pre;
st[u][0].dis = w;
dep[u] = dep[pre] + 1;
disToRoot[u] = disToRoot[pre] + w;
for(int i = head[u]; ~ i; i = G[i].next)
if(G[i].v != pre)
dfs(G[i].v, u, G[i].w);
}
inline void getSt()
{
for(int i = 1; i < 17; i ++)
for(int j = 1; j <= n; j ++)
st[j][i].u = st[st[j][i - 1].u][i - 1].u,
st[j][i].dis = st[j][i - 1].dis + st[st[j][i - 1].u][i - 1].dis;
}
struct query
{
int id, s, t, p;
inline friend int operator <(query a, query b)
{
return a.p < b.p;
}
}a[M];
int getLca(int u, int v)
{
if(dep[u] < dep[v])
swap(u, v);
for(int i = 17 - 1; ~ i; i --)
if(dep[u] - (1 << i) >= dep[v])
u = st[u][i].u;
if(u == v)
return u;
for(int i = 17 - 1; ~ i; i --)
if(st[u][i].u != st[v][i].u)
u = st[u][i].u, v = st[v][i].u;
return st[u][0].u;
}
inline int climb(int &u, int lca, int p)
{
int ret = 0;
while(1)
{
if(disToRoot[u] - disToRoot[lca] < p)
break;
int left = p;
for(int i = 17 - 1; ~ i; i --)
if(left >= st[u][i].dis)
left -= st[u][i].dis, u = st[u][i].u;
ret ++;
}
return ret;
}
int ans[M];
int f[N][17];
inline int jump(int &u, int lca)
{
int ret = 0;
for(int i = 17 - 1; ~ i; i --)
if(dep[f[u][i]] > dep[lca])
ret += 1 << i, u = f[u][i];
return ret;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("childrenTrip.in", "r", stdin);
freopen("childrenTrip.out", "w", stdout);
#endif
n = read();
memset(head, - 1, sizeof(head));
top = 0;
for(int i = 1; i < n; i ++)
{
int u = read(), v = read(), w = read();
addEdge(u, v, w), addEdge(v, u, w);
}
dep[1] = - 1;
disToRoot[1] = 0;
dfs(1, 1, 0);
getSt();
int m = read();
for(int i = 0; i < m; i ++)
a[i].id = i, a[i].s = read(), a[i].t = read(), a[i].p = read();
sort(a, a + m);
int p;
for(p = 0; p < m; p ++)
if(a[p].p > (int)sqrt(n))
break;
for(int i = p; i < m; i ++)
{
int lca = getLca(a[i].s, a[i].t);
ans[a[i].id] = climb(a[i].s, lca, a[i].p) + climb(a[i].t, lca, a[i].p)
+ (disToRoot[a[i].s] + disToRoot[a[i].t] - 2 * disToRoot[lca] + a[i].p - 1) / a[i].p;
}
for(int i = 1; i <= n; i ++)
f[i][0] = i;
int last = 0;
for(int i = 0; i < p; i ++)
{
if(a[i].p != last)
{
for(int j = 1; j <= n; j ++)
{
int rest = a[i].p - (disToRoot[j] - disToRoot[f[j][0]]);
int u = f[j][0];
for(; ;)
{
rest -= st[u][0].dis;
u = st[u][0].u;
if(rest >= 0)
f[j][0] = u;
if(rest <= 0 || ! dep[u])
break;
}
}
for(int j = 1; j < 17; j ++)
for(int k = 1; k <= n; k ++)
f[k][j] = f[f[k][j - 1]][j - 1];
last = a[i].p;
}
int lca = getLca(a[i].s, a[i].t);
ans[a[i].id] = jump(a[i].s, lca) + jump(a[i].t, lca)
+ (disToRoot[a[i].s] + disToRoot[a[i].t] - 2 * disToRoot[lca] + a[i].p - 1) / a[i].p;
}
for(int i = 0; i < m; i ++)
println(ans[i]);
}
```\]
CODECHEF Oct. Challenge 2014 Children Trips的更多相关文章
- codechef January Challenge 2014 Sereja and Graph
题目链接:http://www.codechef.com/JAN14/problems/SEAGRP [题意] 给n个点,m条边的无向图,判断是否有一种删边方案使得每个点的度恰好为1. [分析] 从结 ...
- Codechef March Challenge 2014——The Street
The Street Problem Code: STREETTA https://www.codechef.com/problems/STREETTA Submit Tweet All submis ...
- 【分块+树状数组】codechef November Challenge 2014 .Chef and Churu
https://www.codechef.com/problems/FNCS [题意] [思路] 把n个函数分成√n块,预处理出每块中各个点(n个)被块中函数(√n个)覆盖的次数 查询时求前缀和,对于 ...
- CodeChef November Challenge 2014
重点回忆下我觉得比较有意义的题目吧.水题就只贴代码了. Distinct Characters Subsequence 水. 代码: #include <cstdio> #include ...
- 刷漆(Codechef October Challenge 2014:Remy paints the fence)
[问题描述] Czy做完了所有的回答出了所有的询问,结果是,他因为脑力消耗过大而变得更虚了:).帮助Czy恢复身材的艰巨任务落到了你的肩上. 正巧,你的花园里有一个由N块排成一条直线的木板组成的栅栏, ...
- [Codechef October Challenge 2014]刷漆
问题描述 Czy做完了所有的回答出了所有的询问,结果是,他因为脑力消耗过大而变得更虚了:).帮助Czy恢复身材的艰巨任务落到了你的肩上. 正巧,你的花园里有一个由N块排成一条直线的木板组成的栅栏,木板 ...
- Codechef December Challenge 2014 Chef and Apple Trees 水题
Chef and Apple Trees Chef loves to prepare delicious dishes. This time, Chef has decided to prepare ...
- AC日记——The Street codechef March challenge 2014
The Street 思路: 动态开节点线段树: 等差序列求和于取大,是两个独立的子问题: 所以,建两颗线段树分开维护: 求和:等差数列的首项和公差直接相加即可: 取大: 对于线段树每个节点储存一条斜 ...
- CODECHEF Nov. Challenge 2014 Chef & Churu
@(XSY)[分塊] Hint: 題目原文是英文的, 寫得很難看, 因此翻譯為中文. Input Format First Line is the size of the array i.e. \(N ...
随机推荐
- leetcode-6-basic
解题思路: 这道题真实地反映了我今晚有多脑残=.=只需要从根号N开始向前找,第一个能被N整除的数就是width,然后存到结果就 可以了.因为离根号N越近,width越大,与length的差越小. ve ...
- Linux操作系统启动流程
一般来说,所有的操作系统的启动流程基本就是: 总的来说,linux系统启动流程可以简单总结为以下几步:1)开机BIOS自检,加载硬盘.2)读取MBR,进行MBR引导.3)grub引导菜单(Boot L ...
- P3388 【模板】割点(割顶)
P3388 [模板]割点(割顶) 题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式 ...
- 使用css Flexbox实现垂直居中
CSS布局对我们来说一直是个噩梦,我们都认为flexbox是我们的救世主.是否真的如我们说说,还有待观察,但是flexbox确非常轻松的解决css长久一来比较难解决的居中问题.让我们来看看到底有多容易 ...
- [解读REST] 0.REST 相关参考资料
Web之父 Tim Berners Lee :https://en.wikipedia.org/wiki/Tim_Berners-Lee 世界上诞生的第一个网站:http://info.cern.ch ...
- MacOS常用软件推荐
1.效率提升神器Alfred 可以搜索文件.应用.web搜索.词典等等 链接:https://pan.baidu.com/s/1igv4tuXkuMFOPT9E6Cc5Jg 密码:3o51 软件解压密 ...
- wordpress 使用wp_head()函数
wp_head()的作用: 在WordPress主题中使用此函数控制<head>…</head>之间的标签内容. 以通过header.php模板文件输出html中的head标签 ...
- pip安装 Tensorflow 安装包
最简单的 Tensorflow 的安装方法是在 pip 一键式安装官方预编译好的包 pip install tensorflow通常这种预编译的包的编译参数选择是为了最大兼容性而不是为了最优性能,导致 ...
- 【HNOI2011/bzoj2337】XOR和路径
第二道高斯消元练习题 题意 一张无向图,从点 $1$ 出发每次随机选一条出边走,走到 $n$ 停止,求经过的所有边权异或和的期望. $n\le 100$ 题解 注意一点,异或和的期望 $≠$ 期望的异 ...
- 关于sass和less做自适应网页的区别
less 可以这么写 @r: 15rem; body{margin-top:40/@r}; 但是sass这么写会报错 sass应该这么写 $r: 15; body{margin-top:40re ...