【bzoj4710】[Jsoi2011]分特产 容斥原理+组合数学
题目描述
输入
输出
样例输入
5 4
1 3 3 5
样例输出
384835
题解
容斥原理+组合数学
由于“每个同学都必须至少分得一个特产”这个限制比较难处理,所以我们可以考虑容斥,用 没有限制-至少1个人没分到+至少2个人没分到-... 得到答案。
考虑如果i个人没分到该怎么处理:n个人选出i个不分,方案数为$C_n^i$;对于每种特产,分给$(n-i)$个同学,相当于把$n-i$个数分成$k$段,每段可以为空,方案数为$C_{n-i+k-1}^{k-1}$。
故最终答案为$\sum\limits_{i=0}^{n-1}(-1)^iC_n^i\sum\limits_{j=1}^mC_{n-i+a[j]-1}^{k-1}$。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 2010
using namespace std;
typedef long long ll;
const ll mod = 1000000007;
ll c[N][N];
int w[N];
int main()
{
int n , m , i , j;
ll ans = 0 , tmp;
for(i = 0 ; i <= 2000 ; i ++ )
{
c[i][0] = 1;
for(j = 1 ; j <= i ; j ++ )
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
}
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d" , &w[i]);
for(i = 0 ; i < n ; i ++ )
{
tmp = c[n][i];
for(j = 1 ; j <= m ; j ++ )
tmp = tmp * c[w[j] + n - i - 1][w[j]] % mod;
if(i & 1) ans = (ans - tmp + mod) % mod;
else ans = (ans + tmp) % mod;
}
printf("%lld\n" , ans);
return 0;
}
【bzoj4710】[Jsoi2011]分特产 容斥原理+组合数学的更多相关文章
- BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- BZOJ4710: [Jsoi2011]分特产 组合数学 容斥原理
题意:把M堆特产分给N个同学,要求每个同学至少分到一种特产,共有多少种分法? 把A个球分给B个人的分法种数:(插板法,假设A个球互不相同,依次插入,然后除以全排列去重) C(A,B+A) 把M堆特产分 ...
- BZOJ4710 JSOI2011分特产(容斥原理+组合数学)
显然可以容斥去掉每人都不为空的限制.每种物品分配方式独立,各自算一个可重组合乘起来即可. #include<iostream> #include<cstdio> #includ ...
- 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)
传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...
- bzoj千题计划273:bzoj4710: [Jsoi2011]分特产
http://www.lydsy.com/JudgeOnline/problem.php?id=4710 答案=总方案数-不合法方案数 f[i][j] 前i种特产分给j个人(可能有人没有分到特产)的总 ...
随机推荐
- POJ-1274 The Perfect Stall---二分图模板
题目链接: https://vjudge.net/problem/POJ-1274 题目大意: 有n个奶牛和m个谷仓,现在每个奶牛有自己喜欢去的谷仓,并且它们只会去自己喜欢的谷仓吃东西,问最多有多少奶 ...
- 【BZOJ3106】[CQOI2013] 棋盘游戏(对抗搜索)
点此看题面 大致题意: 在一张\(n*n\)的棋盘上有一枚黑棋子和一枚白棋子.白棋子先移动,然后是黑棋子.白棋子每次可以向上下左右四个方向中任一方向移动一步,黑棋子每次则可以向上下左右四个方向中任一方 ...
- 如何在python中读写和存储matlab的数据文件(*.mat)
使用sicpy.io即可.sicpy.io提供了两个函数loadmat和savemat,非常方便. 以前也有一些开源的库(pymat和pymat2等)来做这个事, 不过自从有了numpy和scipy以 ...
- css属性选择器=,~=,^=,$=,*=,|=
http://www.w3school.com.cn/css/css_selector_attribute.asp =. property和value必须完全一致 : ~=.“约等于”?: ^=. 从 ...
- Java时间为什么从1970-01-01 00:00:00 000开始
不仅仅是Java,几乎所有的语言的时间都是从这一刻开始算起的. 原因:java起源于UNIX系统,而UNIX认为1970年1月1日0点是时间纪元. 最初计算机操作系统是32位,而时间也是用32位表示. ...
- IBM MQ安装
一.下载MQ 可以去官方网站下载,我这次下了一个下载器从官方,然后通过下载器进行MQ的下载. 地址:https://www.ibm.com/developerworks/cn/downloads/ws ...
- spring data事务
事务在spring data中的使用 1:事务一般在service层.因为一个service方法可能会多次调用不同的dao,为了保证事务的完整性,那么多次的dao都放到一个方法里面 2:读的时候可以不 ...
- MySQL表碎片整理
MySQL表碎片整理 1. 计算碎片大小 2. 整理碎片 2.1 使用alter table table_name engine = innodb命令进行整理. 2.2 使用pt-online-sch ...
- linux文件属性之时间戳及文件名属性知识
7 8 9 三列是时间(默认是修改时间) modify 修改时间 -mtime 修改文件内容 change 改变时间 -ctime 文件属性改变 access 访问时间 -atime 访 ...
- Javascript 模块化指北
前言 随着 Web 技术的蓬勃发展和依赖的基础设施日益完善,前端领域逐渐从浏览器扩展至服务端(Node.js),桌面端(PC.Android.iOS),乃至于物联网设备(IoT),其中 JavaScr ...