2016集训测试赛(二十四)Problem C: 棋盘控制

Solution
场上的想法(显然是错的)是这样的: 我们假设棋子是一个一个地放置的, 考虑在放置棋子的过程中可能出现哪些状态. 我们令有序整数对\((i, j)\)表示总共控制了\(i\)行\(j\)列的情况, 我naive地认为一个状态要么不出现, 要么只出现一次. 于是用\(f[i][j]\)来表示出现的概率, 直接进行DP. 然后我用随机函数对拍, 发现是WA的...
考虑问题出现在了哪里: 一个状态实际上是可以出现多次的. 比如说我们考虑分别控制了两行两列的状态: 两行两列产生4个交点, 这4个交点中可以有2个, 3个, 4个棋子. 因此我们发现还要多记录一维, 表示用了多少个棋子.
我们用\(f[x][i][j]\)表示用了\(x\)个棋子, 控制了\(i\)行\(j\)列的状态的出现概率.
f[x][i][j] = &f[x - 1][i - 1][j - 1] \times \frac{mn - (i - 1)m - (j - 1)n + (i - 1)(j - 1)}{mn - (x - 1)} \\
&+ f[x - 1][i - 1][j] \times \frac{j \times (n - (i - 1))}{mn - (x - 1)} \\
&+ f[x - 1][i][j - 1] \times \frac{i \times (m - (j - 1))}{mn - (x - 1)} \\
&+ f[x - 1][i][j] \times \frac{i \times j - (x - 1)}{mn - (x - 1)}
\end{aligned}
\]
考虑如何统计答
\]
同时我们注意到这个式子还不完全是对的: \(f[x - 1][n][m]\)不能用于继续转移.
因此我们在\(f[x][n][m]\)上直接减去\(f[x - 1][n][m]\)即可.
#include <cstdio>
#include <cstring>
const int N = 50, M = 50;
double f[N * M + 1][N + 1][M + 1];
int main()
{
int cs; scanf("%d", &cs);
while(cs --)
{
int n, m; scanf("%d%d", &n, &m);
memset(f, 0, sizeof(f));
f[0][0][0] = 1;
for(int x = 1; x <= n * m; ++ x)
{
for(int i = 1; i <= n; ++ i)
for(int j = 1; j <= m; ++ j)
f[x][i][j] = f[x - 1][i - 1][j - 1] * (m * n - (i - 1) * m - (j - 1) * n + (i - 1) * (j - 1)) / (m * n - (x - 1))
+ f[x - 1][i - 1][j] * (j * (n - (i - 1))) / (m * n - (x - 1))
+ f[x - 1][i][j - 1] * (i * (m - (j - 1))) / (n * m - (x - 1))
+ f[x - 1][i][j] * (i * j - (x - 1)) / (m * n - (x - 1));
f[x][n][m] -= f[x - 1][n][m];
}
double ans = 0;
for(int i = 1; i <= n * m; ++ i) ans += i * f[i][n][m];
printf("%.10lf\n", ans);
}
}
2016集训测试赛(二十四)Problem C: 棋盘控制的更多相关文章
- 2016北京集训测试赛(十四)Problem B: 股神小D
Solution 正解是一个\(\log\)的link-cut tree. 将一条边拆成两个事件, 按照事件排序, link-cut tree维护联通块大小即可. link-cut tree维护子树大 ...
- 2016北京集训测试赛(十四)Problem A: 股神小L
Solution 考虑怎么卖最赚钱: 肯定是只卖不买啊(笑) 虽然说上面的想法很扯淡, 但它确实能给我们提供一种思路, 我们能不买就不买; 要买的时候就买最便宜的. 我们用一个优先队列来维护股票的价格 ...
- 2016集训测试赛(十九)Problem C: 无聊的字符串
Solution 傻X题 我的方法是建立后缀后缀树, 然后在DFS序列上直接二分即可. 关键在于如何得到后缀树上每个字符对应的字节点: 我们要在后缀自动机上记录每个点在后缀树上对应的字母. 考虑如何实 ...
- 2016集训测试赛(十九)Problem A: 24点大师
Solution 这到题目有意思. 首先题目描述给我们提供了一种非常管用的模型. 按照题目的方法, 我们可以轻松用暴力解决20+的问题; 关键在于如何构造更大的情况: 我们发现 \[ [(n + n) ...
- 2016集训测试赛(十八)Problem C: 集串雷 既分数规划学习笔记
Solution 分数规划经典题. 话说我怎么老是忘记分数规划怎么做呀... 所以这里就大概写一下分数规划咯: 分数规划解决的是这样一类问题: 有\(a_1, a_2 ... a_n\)和\(b_1, ...
- 2016北京集训测试赛(十)Problem A: azelso
Solution 我们把遇到一个旗子或者是遇到一个敌人称为一个事件. 这一题思路的巧妙之处在于我们要用\(f[i]\)表示从\(i\)这个事件一直走到终点这段路程中, \(i\)到\(i + 1\)这 ...
- 2016集训测试赛(二十四)Problem B: Prz
Solution 这道题有两个关键点: 如何找到以原串某一个位置为结尾的某个子序列的最晚出现位置 如何找到原串中某个位置之前的所有数字的最晚出现位置中的最大值 第一个关键点: 我们注意到每个数字在\( ...
- 2016集训测试赛(二十六)Problem A: bar
Solution 首先审清题意, 这里要求的是子串而不是子序列... 我们考虑用1表示p, -1表示j. 用sum[i]表示字符串前\(i\)的前缀和. 则我们考虑一个字符串\([L, R]\)有什么 ...
- 2016集训测试赛(二十)Problem B: 字典树
题目大意 你们自己感受一下原题的画风... 我怀疑出题人当年就是语文爆零的 下面复述一下出题人的意思: 操作1: 给你一个点集, 要你在trie上找到所有这样的点, 满足点集中存在某个点所表示的字符串 ...
随机推荐
- 创建数据收集器集(DSC)
TechNet 库 Windows Server Windows Server 2008 R2 und Windows Server 2008 按类别提供的 Windows Server 内容 按类别 ...
- IOS开发---菜鸟学习之路--(二十)-二维码扫描功能的实现
本章将讲解如何实现二维码扫描的功能 首先在github上下载ZBar SDK地址https://github.com/bmorton/ZBarSDK 然后将如下的相关类库添加进去 AVFoundati ...
- 纯js国际化(i18n)
i18n,是internationalization单词的简写,中间18个字符略去,简称i18n,意图就是实现国际化,方便产品在不同的场景下使用 目标:可以点击切换语言或者ChangeLanguage ...
- 利用python列表实现堆栈和队列
堆栈: 堆栈是一个后进先出的数据结构,其工作方式就像生活中常见到的直梯,先进去的人肯定是最后出. 我们可以设置一个类,用列表来存放栈中的元素的信息,利用列表的append()和pop()方法可以实现栈 ...
- C# Winform打包部署时添加注册表信息实现开机启动(转载)
使用VS自带的打包模块可以很方便的对项目进行打包部署,同时我们也可以在安装部署时操作注册表实现开机启动软件.具体实现如下: 1.添加安装部署项目后,鼠标右键安装项目->视图->注册表 ...
- docker log 批量删除报错: find: `/var/lib/docker/containers/': 没有那个文件或目录
问题描述: 服务器上面docker log太多,打算用之前写的批量清理shell脚本清理掉,但是发现报错. find: `/var/lib/docker/containers/': 没有那个文件或目录 ...
- Spring AOP Example 文件下载:
文件下载:http://files.cnblogs.com/wucg/spring_aop_excise.zip P:124 spring核心技术 P225: spring doc 可以把Advi ...
- Box 类
public class Box extends JComponent implements Accessible使用 BoxLayout 对象作为其布局管理器的一个轻量级容器.Box 提供几个对使用 ...
- BZOJ 4827 [Hnoi2017]礼物 ——FFT
题目上要求一个循环卷积的最小值,直接破环成链然后FFT就可以了. 然后考虑计算的式子,可以分成两个部分分开计算. 前半部分FFT,后半部分扫一遍. #include <map> #incl ...
- Codeforces Round #323 (Div. 2) C 无敌gcd 数学/贪心
C. GCD Table time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...