LOJ #6010. 「网络流 24 题」数字梯形
#6010. 「网络流 24 题」数字梯形
题目描述
给定一个由 n nn 行数字组成的数字梯形如下图所示。梯形的第一行有 m mm 个数字。从梯形的顶部的 m mm 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径。
分别遵守以下规则:
- 从梯形的顶至底的 m mm 条路径互不相交;
- 从梯形的顶至底的 m mm 条路径仅在数字结点处相交;
- 从梯形的顶至底的 m mm 条路径允许在数字结点相交或边相交。
输入格式
第 1 11 行中有 2 22 个正整数 m mm 和 n nn,分别表示数字梯形的第一行有 m mm 个数字,共有 n nn 行。接下来的 n nn 行是数字梯形中各行的数字。
第 1 11 行有 m mm 个数字,第 2 22 行有 m+1 m + 1m+1 个数字 ……
输出格式
将按照规则 1,规则 2,和规则 3 计算出的最大数字总和并输出,每行一个最大总和。
样例
样例输入
2 5
2 3
3 4 5
9 10 9 1
1 1 10 1 1
1 1 10 12 1 1
样例输出
66
75
77
数据范围与提示
1≤m,n≤20 1 \leq m, n \leq 201≤m,n≤20
code
#include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
const int N = ;
const int INF = 1e9; struct Edge{
int u,v,f,c,nxt;
Edge(){}
Edge(int a,int b,int flow,int cost,int nt) {
u = a;v = b;f = flow;c = cost;nxt = nt;
}
}e[];
int head[N],dis[N],q[],pre[N],a[][],b[][];
bool vis[N];
int n,m,S,T,tn,L,R,Mc,ans,tot; inline char nc() {
static char buf[],*p1 = buf,*p2 = buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2) ? EOF :*p1++;
}
inline int read() {
int x = ,f = ;char ch=nc();
for (; ch<''||ch>''; ch=nc()) if(ch=='-')f=-;
for (; ch>=''&&ch<=''; ch=nc()) x=x*+ch-'';
return x*f;
}
void add_edge(int u,int v,int f,int c) {
e[++tot] = Edge(u,v,f,c,head[u]);head[u] = tot;
e[++tot] = Edge(v,u,,-c,head[v]);head[v] = tot;
}
bool spfa() {
for (int i=; i<=T; ++i) vis[i]=false,dis[i]=INF;
L = ;R = ;
dis[S] = ;
q[++R] = S;vis[S] = true;pre[S] = ;
while (L <= R) {
int u = q[L++];
for (int i=head[u]; i; i=e[i].nxt) {
int v = e[i].v;
if (dis[v]>dis[u]+e[i].c && e[i].f > ) {
dis[v] = dis[u] + e[i].c;
pre[v] = i;
if (!vis[v]) q[++R] = v,vis[v] = true;
}
}
vis[u] = false;
}
return dis[T]!=INF;
}
void mcf() {
int zf = INF;
for (int i=T; i!=S; i=e[pre[i]].u)
zf = min(zf,e[pre[i]].f);
for (int i=T; i!=S; i=e[pre[i]].u)
e[pre[i]].f -= zf,e[pre[i]^].f += zf;
Mc += dis[T]*zf;
}
int work() {
Mc = ;
while (spfa()) mcf();
printf("%d\n",-Mc);
}
void init() {
tot = ;
memset(head,,sizeof(head));
}
void build_1() {
init();
S = tn + tn + ;T = tn + tn + ;
for (int i=; i<=n; ++i)
for (int j=; j<=m+i-; ++j) {
add_edge(b[i][j],b[i][j]+tn,,-a[i][j]);
add_edge(b[i][j]+tn,b[i+][j],,);
add_edge(b[i][j]+tn,b[i+][j+],,);
if (i==) add_edge(S,b[i][j],,);
if (i==n) add_edge(b[i][j]+tn,T,,);
}
}
void build_2() {
init();
S = tn + ;T = tn + ;
for (int i=; i<=n; ++i) {
for (int j=; j<=m+i-; ++j) {
add_edge(b[i][j],b[i+][j],,-a[i][j]);
add_edge(b[i][j],b[i+][j+],,-a[i][j]);
if (i==) add_edge(S,b[i][j],,);
if (i==n) add_edge(b[i][j],T,INF,-a[i][j]);
}
}
}
void build_3() {
init();
S = tn + ;T = tn + ;
for (int i=; i<=n; ++i) {
for (int j=; j<=m+i-; ++j) {
add_edge(b[i][j],b[i+][j],INF,-a[i][j]);
add_edge(b[i][j],b[i+][j+],INF,-a[i][j]);
if (i==) add_edge(S,b[i][j],,);
if (i==n) add_edge(b[i][j],T,INF,-a[i][j]);
}
}
}
int main() {
m = read(),n = read();
for (int i=; i<=n; ++i)
for (int j=; j<=m+i-; ++j) a[i][j] = read(),b[i][j] = ++tn; build_1();work();
build_2();work();
build_3();work();
return ;
}
LOJ #6010. 「网络流 24 题」数字梯形的更多相关文章
- 【刷题】LOJ 6010 「网络流 24 题」数字梯形
题目描述 给定一个由 \(n\) 行数字组成的数字梯形如下图所示.梯形的第一行有 \(m\) 个数字.从梯形的顶部的 \(m\) 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至 ...
- 2018.10.15 loj#6010. 「网络流 24 题」数字梯形(费用流)
传送门 费用流经典题. 按照题目要求建边. 为了方便我将所有格子拆点,三种情况下容量分别为111,infinfinf,infinfinf,费用都为validi,jval_{id_{i,j}}valid ...
- Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流)
Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流) Description 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开 ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划
[luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...
- [LOJ#6002]「网络流 24 题」最小路径覆盖
[LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- loj #6013. 「网络流 24 题」负载平衡
#6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...
- loj #6122. 「网络流 24 题」航空路线问题
#6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...
随机推荐
- SQL Server DBA SQL
. 监控事例的等待 ,,)) "Prev", ,,)) "Curr",count(*) "Tot" from v$session_Wait ...
- 详细讲解:通过phpstudy 设置站点域名、站点域名管理
我们在本地编程的时候,会遇到路径特别长的情况,这样子我们在url中的输入就会变得不方便而且容易报错,那么在phpstudy这个环境中,有一个很好的功能,就是“站点域名管理”,他能让我们的url网址大大 ...
- 流媒体 5——MPEG声音
1. 听觉系统的感知特性: MPEG声音的数据压缩和编码不是依据波形本身的相关性和模拟人的发音器官的特性,而是利用人的听觉系统的特性来达到压缩声音数据的目的,这种压缩编码称为感知声音编码. 许多科学工 ...
- Django Form 表单
Form 表单功能 生成HTML表单元素检查表单元素的合法性验证如果错误,重复显示表单数据类型转换 Form相关的对象 Widget 渲染成HTML元素的工具Field Form对象中的一个字段For ...
- JS中的异常exception
js提供了一套异常处理机制.异常是干扰程序的正常流程的不寻常事故,当发生这样的事故时,你的程序应该抛出一个异常 try_it() { try { console.log(add("1&quo ...
- 2018.10.26 NOIP2018模拟赛 解题报告
得分: \(0+10+10=20\)(\(T1\)死于假题面,\(T3\)死于细节... ...) \(P.S.\)由于原题是图片,所以我没有上传题目描述,只有数据. \(T1\):颜料大乱斗(点此看 ...
- DLM分布式锁的实现机制
1.AST简介 DLM进程(LMON.LMD)之间的跨实例通信是使用高速互联上的IPC层实现的.为了传递锁资源的状态,DLM使用了异步陷阱(AST),它在操作系统处理程序例程中实现为中断.纯粹主义者可 ...
- 完结篇OO总结
目录 前言 一.第四单元两次架构设计 二.架构设计及OO方法理解的演进 三.测试理解与实践的演进 四.课程收获 五.改进建议 前言 持续了17周的OO终于走向了尾声,想想寒假的时候连类都不知道是什么, ...
- java基础面试题:写clone()方法时,通常都有一行代码,是什么?
clone()方法 与new constructor()构造器创建对象不同 是克隆一个新的对象 package com.swift; public class Clone_Test { public ...
- caller、callee的用法及区别
1 :caller 返回一个调用当前函数的引用 如果是由顶层调用的话 则返回null (举个栗子哈 caller给你打电话的人 谁给你打电话了 谁调用了你 很显然是下面a函数的执行 只有在打电话的时 ...