LOJ #6010. 「网络流 24 题」数字梯形
#6010. 「网络流 24 题」数字梯形
题目描述
给定一个由 n nn 行数字组成的数字梯形如下图所示。梯形的第一行有 m mm 个数字。从梯形的顶部的 m mm 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径。
分别遵守以下规则:
- 从梯形的顶至底的 m mm 条路径互不相交;
- 从梯形的顶至底的 m mm 条路径仅在数字结点处相交;
- 从梯形的顶至底的 m mm 条路径允许在数字结点相交或边相交。
输入格式
第 1 11 行中有 2 22 个正整数 m mm 和 n nn,分别表示数字梯形的第一行有 m mm 个数字,共有 n nn 行。接下来的 n nn 行是数字梯形中各行的数字。
第 1 11 行有 m mm 个数字,第 2 22 行有 m+1 m + 1m+1 个数字 ……
输出格式
将按照规则 1,规则 2,和规则 3 计算出的最大数字总和并输出,每行一个最大总和。
样例
样例输入
2 5
2 3
3 4 5
9 10 9 1
1 1 10 1 1
1 1 10 12 1 1
样例输出
66
75
77
数据范围与提示
1≤m,n≤20 1 \leq m, n \leq 201≤m,n≤20
code
#include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
const int N = ;
const int INF = 1e9; struct Edge{
int u,v,f,c,nxt;
Edge(){}
Edge(int a,int b,int flow,int cost,int nt) {
u = a;v = b;f = flow;c = cost;nxt = nt;
}
}e[];
int head[N],dis[N],q[],pre[N],a[][],b[][];
bool vis[N];
int n,m,S,T,tn,L,R,Mc,ans,tot; inline char nc() {
static char buf[],*p1 = buf,*p2 = buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2) ? EOF :*p1++;
}
inline int read() {
int x = ,f = ;char ch=nc();
for (; ch<''||ch>''; ch=nc()) if(ch=='-')f=-;
for (; ch>=''&&ch<=''; ch=nc()) x=x*+ch-'';
return x*f;
}
void add_edge(int u,int v,int f,int c) {
e[++tot] = Edge(u,v,f,c,head[u]);head[u] = tot;
e[++tot] = Edge(v,u,,-c,head[v]);head[v] = tot;
}
bool spfa() {
for (int i=; i<=T; ++i) vis[i]=false,dis[i]=INF;
L = ;R = ;
dis[S] = ;
q[++R] = S;vis[S] = true;pre[S] = ;
while (L <= R) {
int u = q[L++];
for (int i=head[u]; i; i=e[i].nxt) {
int v = e[i].v;
if (dis[v]>dis[u]+e[i].c && e[i].f > ) {
dis[v] = dis[u] + e[i].c;
pre[v] = i;
if (!vis[v]) q[++R] = v,vis[v] = true;
}
}
vis[u] = false;
}
return dis[T]!=INF;
}
void mcf() {
int zf = INF;
for (int i=T; i!=S; i=e[pre[i]].u)
zf = min(zf,e[pre[i]].f);
for (int i=T; i!=S; i=e[pre[i]].u)
e[pre[i]].f -= zf,e[pre[i]^].f += zf;
Mc += dis[T]*zf;
}
int work() {
Mc = ;
while (spfa()) mcf();
printf("%d\n",-Mc);
}
void init() {
tot = ;
memset(head,,sizeof(head));
}
void build_1() {
init();
S = tn + tn + ;T = tn + tn + ;
for (int i=; i<=n; ++i)
for (int j=; j<=m+i-; ++j) {
add_edge(b[i][j],b[i][j]+tn,,-a[i][j]);
add_edge(b[i][j]+tn,b[i+][j],,);
add_edge(b[i][j]+tn,b[i+][j+],,);
if (i==) add_edge(S,b[i][j],,);
if (i==n) add_edge(b[i][j]+tn,T,,);
}
}
void build_2() {
init();
S = tn + ;T = tn + ;
for (int i=; i<=n; ++i) {
for (int j=; j<=m+i-; ++j) {
add_edge(b[i][j],b[i+][j],,-a[i][j]);
add_edge(b[i][j],b[i+][j+],,-a[i][j]);
if (i==) add_edge(S,b[i][j],,);
if (i==n) add_edge(b[i][j],T,INF,-a[i][j]);
}
}
}
void build_3() {
init();
S = tn + ;T = tn + ;
for (int i=; i<=n; ++i) {
for (int j=; j<=m+i-; ++j) {
add_edge(b[i][j],b[i+][j],INF,-a[i][j]);
add_edge(b[i][j],b[i+][j+],INF,-a[i][j]);
if (i==) add_edge(S,b[i][j],,);
if (i==n) add_edge(b[i][j],T,INF,-a[i][j]);
}
}
}
int main() {
m = read(),n = read();
for (int i=; i<=n; ++i)
for (int j=; j<=m+i-; ++j) a[i][j] = read(),b[i][j] = ++tn; build_1();work();
build_2();work();
build_3();work();
return ;
}
LOJ #6010. 「网络流 24 题」数字梯形的更多相关文章
- 【刷题】LOJ 6010 「网络流 24 题」数字梯形
题目描述 给定一个由 \(n\) 行数字组成的数字梯形如下图所示.梯形的第一行有 \(m\) 个数字.从梯形的顶部的 \(m\) 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至 ...
- 2018.10.15 loj#6010. 「网络流 24 题」数字梯形(费用流)
传送门 费用流经典题. 按照题目要求建边. 为了方便我将所有格子拆点,三种情况下容量分别为111,infinfinf,infinfinf,费用都为validi,jval_{id_{i,j}}valid ...
- Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流)
Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流) Description 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开 ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划
[luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...
- [LOJ#6002]「网络流 24 题」最小路径覆盖
[LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- loj #6013. 「网络流 24 题」负载平衡
#6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...
- loj #6122. 「网络流 24 题」航空路线问题
#6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...
随机推荐
- VMware 虚拟机安装及部署
Linux系统安装及网络配置 这篇文章介绍关于Linux系统的安装以及网络配置,关于虚拟机配置中网络的几个模式区别进行详细讲解.学习Linux对于后端开发人员来说是很有必要的,结合实际开发,Linux ...
- LeetCode Reverse Bits 反置位值
题意:给定一个无符号32位整数,将其二进制形式左右反置,再以整型返回. 思路:循环32轮,将n往右挤出一位就补到ans的尾巴上. class Solution { public: uint32_t r ...
- 详细步骤教你安装yii高级应用程序和配置composer环境
现在开始工作,应公司的要求,要开始接触yii了,作为一个没有碰过yii的小白,首先一个问题就是怎么去安装高级程序应用,过程不麻烦,但是也需要细心和耐心,百度资料里面的教程都不太全,漏这漏那的,所以在这 ...
- 初学AC自动机
前言 一直听说\(AC\)自动机是一个很难很难的算法,而且它不在\(NOIP\)提高组范围内(这才是关键),所以我一直没去学. 最近被一些字符串题坑得太惨,于是下定决心去学\(AC\)自动机. 简介 ...
- 【HHHOJ】NOIP2018 模拟赛(二十五) 解题报告
点此进入比赛 得分: \(100+100+20=220\)(\(T1\)打了两个小时,以至于\(T3\)没时间打了,无奈交暴力) 排名: \(Rank\ 8\) \(Rating\):\(+19\) ...
- 深入理解计算机系统_3e 第九章家庭作业 CS:APP3e chapter 9 homework
9.11 A. 00001001 111100 B. +----------------------------+ | Parameter Value | +--------------------- ...
- numpy.mean
http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html numpy.mean(a, axis=None, dtype=N ...
- BundleConfig的作用
在ASP.NET MVC4中(在WebForm中应该也有),有一个叫做Bundle的东西,它用来将js和css进行压缩(多个文件可以打包成一个文件),并且可以区分调试和非调试,在调试时不进行压缩,以原 ...
- 通过Jquery获取RadioButtonList选中值
推荐 使用第二种,第一种有时候不起作用 第一种:通过find方法 获取RadioButtonList所选中的值 <script type="text/javascript"& ...
- Node第二天
一.http模块: 步骤一:创建http服务器 const https = require('https'); 步骤二:const fs = require('fs'); 步骤三:创建请求=> ...