python 图像的离散傅立叶变换
图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下:
在python中,numpy库的fft模块有实现好了的二维离散傅立叶变换函数,函数是fft2,输入一张灰度图,输出经过二维离散傅立叶变换后的结果,但是具体实现并不是直接用上述公式,而是用快速傅立叶变换。结果需要通过使用abs求绝对值才可以进行可视化,但是视觉效果并不理想,因为傅立叶频谱范围很大,所以要用log对数变换来改善视觉效果。
在使用log函数的时候,要写成log(1 + x) 而不是直接用log(x),这是为了避开对0做对数处理。
另外,图像变换的原点需要移动到频域矩形的中心,所以要对fft2的结果使用fftshift函数。最后也可以使用log来改善可视化效果。
代码如下:
import numpy as np
import matplotlib.pyplot as plt img = plt.imread('photo.jpg') #根据公式转成灰度图
img = 0.2126 * img[:,:,0] + 0.7152 * img[:,:,1] + 0.0722 * img[:,:,2] #显示原图
plt.subplot(231),plt.imshow(img,'gray'),plt.title('original') #进行傅立叶变换,并显示结果
fft2 = np.fft.fft2(img)
plt.subplot(232),plt.imshow(np.abs(fft2),'gray'),plt.title('fft2') #将图像变换的原点移动到频域矩形的中心,并显示效果
shift2center = np.fft.fftshift(fft2)
plt.subplot(233),plt.imshow(np.abs(shift2center),'gray'),plt.title('shift2center') #对傅立叶变换的结果进行对数变换,并显示效果
log_fft2 = np.log(1 + np.abs(fft2))
plt.subplot(235),plt.imshow(log_fft2,'gray'),plt.title('log_fft2') #对中心化后的结果进行对数变换,并显示结果
log_shift2center = np.log(1 + np.abs(shift2center))
plt.subplot(236),plt.imshow(log_shift2center,'gray'),plt.title('log_shift2center')
运行结果:
根据公式实现的二维离散傅立叶变换如下:
import numpy as np
import matplotlib.pyplot as plt
PI = 3.141591265
img = plt.imread('temp.jpg') #根据公式转成灰度图
img = 0.2126 * img[:,:,0] + 0.7152 * img[:,:,1] + 0.0722 * img[:,:,2] #显示原图
plt.subplot(131),plt.imshow(img,'gray'),plt.title('original') #进行傅立叶变换,并显示结果
fft2 = np.fft.fft2(img)
log_fft2 = np.log(1 + np.abs(fft2))
plt.subplot(132),plt.imshow(log_fft2,'gray'),plt.title('log_fft2') h , w = img.shape
#生成一个同样大小的复数矩阵
F = np.zeros([h,w],'complex128')
for u in range(h):
for v in range(w):
res = 0
for x in range(h):
for y in range(w):
res += img[x,y] * np.exp(-1.j * 2 * PI * (u * x / h + v * y / w))
F[u,v] = res
log_F = np.log(1 + np.abs(F))
plt.subplot(133),plt.imshow(log_F,'gray'),plt.title('log_F')
直接根据公式实现复杂度很高,因为是四重循环,时间复杂度为O(M2N2),所以实际用的时候需要用快速傅立叶变换来实现
参考
1、https://www.cnblogs.com/xianglan/archive/2010/12/30/1922386.html
python 图像的离散傅立叶变换的更多相关文章
- 离散傅立叶变换与快速傅立叶变换(DFT与FFT)
自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...
- OpenCV 离散傅立叶变换
#include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include ...
- Matlab图像处理系列4———傅立叶变换和反变换的图像
注意:这一系列实验的图像处理程序,使用Matlab实现最重要的图像处理算法 1.Fourier兑换 (1)频域增强 除了在空间域内能够加工处理图像以外,我们还能够将图像变换到其它空间后进行处理.这些方 ...
- Matlab图像处理系列4———图像傅立叶变换与反变换
注:本系列来自于图像处理课程实验.用Matlab实现最主要的图像处理算法 1.Fourier变换 (1)频域增强 除了在空间域内能够加工处理图像以外.我们还能够将图像变换到其它空间后进行处理.这些方法 ...
- 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换
写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...
- $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换
\(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...
- 快速傅立叶变换(FFT)
多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这 ...
- 傅立叶变换—DFT
背景:最近看到实验室其他同学在用傅立叶变换解决问题,我也想通过并行来解决这个问题,所以看了一下傅立叶变换的东西,感觉涵盖的东西还能多,我只是初步做了一下了解(一定很片面,但是我主要是为了应用它,主要了 ...
- Python 实现图像快速傅里叶变换和离散余弦变换
图像的正交变换在数字图像的处理与分析中起着很重要的作用,被广泛应用于图像增强.去噪.压缩编码等众多领域.本文手工实现了二维离散傅里叶变换和二维离散余弦变换算法,并在多个图像样本上进行测试,以探究二者的 ...
随机推荐
- LeetCode Array Easy 485. Max Consecutive Ones
Description Given a binary array, find the maximum number of consecutive 1s in this array. Example 1 ...
- 对象名 XXX 无效。
对象名 XXX 无效. 首先检查自己数据库连接字符串是否正确!!! 已经有过好几次这样的错误了,还是不长记性,特意记下
- 2018-5-20-C#-BBcode-转-Markdown
title author date CreateTime categories C# BBcode 转 Markdown lindexi 2018-05-20 14:58:57 +0800 2018- ...
- JS window对象 返回前一个浏览的页面 back()方法,加载 history 列表中的前一个 URL。 语法: window.history.back();
返回前一个浏览的页面 back()方法,加载 history 列表中的前一个 URL. 语法: window.history.back(); 比如,返回前一个浏览的页面,代码如下: window.hi ...
- 使用macOS苹方替换Windows 10微软雅黑
关于微软雅黑 Windows从Vista开始用到现在的”微软雅黑”十多年以来基本没什么大改动,而大家的显示器从CRT进化到了IPS高分屏,十年前看着还OK的字体现在在绝大多数屏幕上可能就是这个样子的: ...
- python数字图像处理(三)边缘检测常用算子
在该文将介绍基本的几种应用于边缘检测的滤波器,首先我们读入saber用来做为示例的图像 #读入图像代码,在此之前应当引入必要的opencv matplotlib numpy saber = cv2.i ...
- [算法学习]开始leetcode之旅
在此记录一下用javascript刷leetcode的过程,每天都要坚持! 1.Two Sum Given an array of integers, find two numbers such th ...
- HTML基础 用div布局实现一个简单网页
div布局如下 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <t ...
- 太可怕了!黑客是如何攻击劫持安卓用户的DNS?
最近发现的针对Android设备的广泛路由器的DNS劫持恶意软件现在已升级为针对iOS设备以及桌面用户的功能. 被称为RoamingMantis的恶意软件最初发现在上个月劫持了互联网路由器,以散布旨在 ...
- checked属性 详解
注意:当元素中有checked属性时,其值无论是什么,都是被选中状态,那怎么才能让其不被选中呢,就是用jquery或js代码实现 1.html中的checked属性.仔细研究下会发现一个很怪异的现象. ...