图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下:

  在python中,numpy库的fft模块有实现好了的二维离散傅立叶变换函数,函数是fft2,输入一张灰度图,输出经过二维离散傅立叶变换后的结果,但是具体实现并不是直接用上述公式,而是用快速傅立叶变换。结果需要通过使用abs求绝对值才可以进行可视化,但是视觉效果并不理想,因为傅立叶频谱范围很大,所以要用log对数变换来改善视觉效果。

  在使用log函数的时候,要写成log(1 + x) 而不是直接用log(x),这是为了避开对0做对数处理。

  另外,图像变换的原点需要移动到频域矩形的中心,所以要对fft2的结果使用fftshift函数。最后也可以使用log来改善可视化效果。

  代码如下:

 import numpy as np
import matplotlib.pyplot as plt img = plt.imread('photo.jpg') #根据公式转成灰度图
img = 0.2126 * img[:,:,0] + 0.7152 * img[:,:,1] + 0.0722 * img[:,:,2] #显示原图
plt.subplot(231),plt.imshow(img,'gray'),plt.title('original') #进行傅立叶变换,并显示结果
fft2 = np.fft.fft2(img)
plt.subplot(232),plt.imshow(np.abs(fft2),'gray'),plt.title('fft2') #将图像变换的原点移动到频域矩形的中心,并显示效果
shift2center = np.fft.fftshift(fft2)
plt.subplot(233),plt.imshow(np.abs(shift2center),'gray'),plt.title('shift2center') #对傅立叶变换的结果进行对数变换,并显示效果
log_fft2 = np.log(1 + np.abs(fft2))
plt.subplot(235),plt.imshow(log_fft2,'gray'),plt.title('log_fft2') #对中心化后的结果进行对数变换,并显示结果
log_shift2center = np.log(1 + np.abs(shift2center))
plt.subplot(236),plt.imshow(log_shift2center,'gray'),plt.title('log_shift2center')

  运行结果:

   根据公式实现的二维离散傅立叶变换如下:

 import numpy as np
import matplotlib.pyplot as plt
PI = 3.141591265
img = plt.imread('temp.jpg') #根据公式转成灰度图
img = 0.2126 * img[:,:,0] + 0.7152 * img[:,:,1] + 0.0722 * img[:,:,2] #显示原图
plt.subplot(131),plt.imshow(img,'gray'),plt.title('original') #进行傅立叶变换,并显示结果
fft2 = np.fft.fft2(img)
log_fft2 = np.log(1 + np.abs(fft2))
plt.subplot(132),plt.imshow(log_fft2,'gray'),plt.title('log_fft2') h , w = img.shape
#生成一个同样大小的复数矩阵
F = np.zeros([h,w],'complex128')
for u in range(h):
for v in range(w):
res = 0
for x in range(h):
for y in range(w):
res += img[x,y] * np.exp(-1.j * 2 * PI * (u * x / h + v * y / w))
F[u,v] = res
log_F = np.log(1 + np.abs(F))
plt.subplot(133),plt.imshow(log_F,'gray'),plt.title('log_F')

  直接根据公式实现复杂度很高,因为是四重循环,时间复杂度为O(M2N2),所以实际用的时候需要用快速傅立叶变换来实现

参考

1、https://www.cnblogs.com/xianglan/archive/2010/12/30/1922386.html

python 图像的离散傅立叶变换的更多相关文章

  1. 离散傅立叶变换与快速傅立叶变换(DFT与FFT)

    自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...

  2. OpenCV 离散傅立叶变换

    #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include ...

  3. Matlab图像处理系列4———傅立叶变换和反变换的图像

    注意:这一系列实验的图像处理程序,使用Matlab实现最重要的图像处理算法 1.Fourier兑换 (1)频域增强 除了在空间域内能够加工处理图像以外,我们还能够将图像变换到其它空间后进行处理.这些方 ...

  4. Matlab图像处理系列4———图像傅立叶变换与反变换

    注:本系列来自于图像处理课程实验.用Matlab实现最主要的图像处理算法 1.Fourier变换 (1)频域增强 除了在空间域内能够加工处理图像以外.我们还能够将图像变换到其它空间后进行处理.这些方法 ...

  5. 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换

    写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...

  6. $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换

    \(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...

  7. 快速傅立叶变换(FFT)

    多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这 ...

  8. 傅立叶变换—DFT

    背景:最近看到实验室其他同学在用傅立叶变换解决问题,我也想通过并行来解决这个问题,所以看了一下傅立叶变换的东西,感觉涵盖的东西还能多,我只是初步做了一下了解(一定很片面,但是我主要是为了应用它,主要了 ...

  9. Python 实现图像快速傅里叶变换和离散余弦变换

    图像的正交变换在数字图像的处理与分析中起着很重要的作用,被广泛应用于图像增强.去噪.压缩编码等众多领域.本文手工实现了二维离散傅里叶变换和二维离散余弦变换算法,并在多个图像样本上进行测试,以探究二者的 ...

随机推荐

  1. openstack组件之nova

    Nova常用命令  1.查看vm列表 nova listnova list --all 2.查看镜像列表  nova image-list   3.查看卷列表 nova voluma-list 4.查 ...

  2. python搭建服务,传输文件

    一.进入需要共享的文件目录 #cd /home #python -m SimpleHTTPServer 二.浏览器访问资源 再浏览器地址栏输入: 服务器IP:8000 如图:

  3. AbstractQueuedSynchronizer简单使用

    AQS是JUC中很多同步组件的构建基础,简单来讲,它内部实现主要是状态变量state和一个FIFO队列来完成,同步队列的头结点是当前获取到同步状态的结点,获取同步状态state失败的线程,会被构造成一 ...

  4. python 模仿 C/C++ 结构体

    import struct from ctypes import * class MyStruct(Structure): _fields_ = [ ("v1", c_char), ...

  5. java中的进制转换以及字符串类和数值类的相互转化

    import java.util.*; import java.io.*; import java.math.*; import java.math.*; public class Main { pu ...

  6. 解决如何通过循环来使用数据库的值设置jsp的select标签的option值

    Select 处的代码: <select name="position"> <span style="white-space:pre"> ...

  7. filebeat配置详解

    从input读取事件源,经过相应解析和处理之后,从output输出到目标存储库(elasticsearch或其他).输入可以从Log.Syslog.Stdin.Redis.UDP.Docker.TCP ...

  8. Android中实现Activity的启动拦截之----实现360卫士的安装应用界面

    第一.摘要 今天不是周末,但是我已经放假了,所以就开始我们的技术探索之旅,今天我们来讲一下Android中最期待的技术,就是拦截Activity的启动,其实我在去年的时候,就像实现这个技术了,但是因为 ...

  9. Codeforces Round #578 (Div. 2) E. Compress Words (双哈希)

    题目:https://codeforc.es/contest/1200/problem/E 题意:给你n个单词,你需要把他合成成一个句子,相邻的两个单词,相邻部分相同的话可以把其中一个的删掉 思路:因 ...

  10. [CSP-S模拟测试]:联盟(搜索+树的直径)

    题目描述 $G$国周边的$n$个小国家构成一个联盟以抵御$G$国入侵,为互相支援,他们建立了$n−1$条双向通路,使得任意两个国家可以经过通路相互到达.当一个国家受到攻击时,所有其它国家都会沿着最短路 ...