python 图像的离散傅立叶变换
图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下:

在python中,numpy库的fft模块有实现好了的二维离散傅立叶变换函数,函数是fft2,输入一张灰度图,输出经过二维离散傅立叶变换后的结果,但是具体实现并不是直接用上述公式,而是用快速傅立叶变换。结果需要通过使用abs求绝对值才可以进行可视化,但是视觉效果并不理想,因为傅立叶频谱范围很大,所以要用log对数变换来改善视觉效果。
在使用log函数的时候,要写成log(1 + x) 而不是直接用log(x),这是为了避开对0做对数处理。
另外,图像变换的原点需要移动到频域矩形的中心,所以要对fft2的结果使用fftshift函数。最后也可以使用log来改善可视化效果。
代码如下:
import numpy as np
import matplotlib.pyplot as plt img = plt.imread('photo.jpg') #根据公式转成灰度图
img = 0.2126 * img[:,:,0] + 0.7152 * img[:,:,1] + 0.0722 * img[:,:,2] #显示原图
plt.subplot(231),plt.imshow(img,'gray'),plt.title('original') #进行傅立叶变换,并显示结果
fft2 = np.fft.fft2(img)
plt.subplot(232),plt.imshow(np.abs(fft2),'gray'),plt.title('fft2') #将图像变换的原点移动到频域矩形的中心,并显示效果
shift2center = np.fft.fftshift(fft2)
plt.subplot(233),plt.imshow(np.abs(shift2center),'gray'),plt.title('shift2center') #对傅立叶变换的结果进行对数变换,并显示效果
log_fft2 = np.log(1 + np.abs(fft2))
plt.subplot(235),plt.imshow(log_fft2,'gray'),plt.title('log_fft2') #对中心化后的结果进行对数变换,并显示结果
log_shift2center = np.log(1 + np.abs(shift2center))
plt.subplot(236),plt.imshow(log_shift2center,'gray'),plt.title('log_shift2center')
运行结果:


根据公式实现的二维离散傅立叶变换如下:
import numpy as np
import matplotlib.pyplot as plt
PI = 3.141591265
img = plt.imread('temp.jpg') #根据公式转成灰度图
img = 0.2126 * img[:,:,0] + 0.7152 * img[:,:,1] + 0.0722 * img[:,:,2] #显示原图
plt.subplot(131),plt.imshow(img,'gray'),plt.title('original') #进行傅立叶变换,并显示结果
fft2 = np.fft.fft2(img)
log_fft2 = np.log(1 + np.abs(fft2))
plt.subplot(132),plt.imshow(log_fft2,'gray'),plt.title('log_fft2') h , w = img.shape
#生成一个同样大小的复数矩阵
F = np.zeros([h,w],'complex128')
for u in range(h):
for v in range(w):
res = 0
for x in range(h):
for y in range(w):
res += img[x,y] * np.exp(-1.j * 2 * PI * (u * x / h + v * y / w))
F[u,v] = res
log_F = np.log(1 + np.abs(F))
plt.subplot(133),plt.imshow(log_F,'gray'),plt.title('log_F')
直接根据公式实现复杂度很高,因为是四重循环,时间复杂度为O(M2N2),所以实际用的时候需要用快速傅立叶变换来实现
参考
1、https://www.cnblogs.com/xianglan/archive/2010/12/30/1922386.html
python 图像的离散傅立叶变换的更多相关文章
- 离散傅立叶变换与快速傅立叶变换(DFT与FFT)
自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...
- OpenCV 离散傅立叶变换
#include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include ...
- Matlab图像处理系列4———傅立叶变换和反变换的图像
注意:这一系列实验的图像处理程序,使用Matlab实现最重要的图像处理算法 1.Fourier兑换 (1)频域增强 除了在空间域内能够加工处理图像以外,我们还能够将图像变换到其它空间后进行处理.这些方 ...
- Matlab图像处理系列4———图像傅立叶变换与反变换
注:本系列来自于图像处理课程实验.用Matlab实现最主要的图像处理算法 1.Fourier变换 (1)频域增强 除了在空间域内能够加工处理图像以外.我们还能够将图像变换到其它空间后进行处理.这些方法 ...
- 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换
写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...
- $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换
\(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...
- 快速傅立叶变换(FFT)
多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这 ...
- 傅立叶变换—DFT
背景:最近看到实验室其他同学在用傅立叶变换解决问题,我也想通过并行来解决这个问题,所以看了一下傅立叶变换的东西,感觉涵盖的东西还能多,我只是初步做了一下了解(一定很片面,但是我主要是为了应用它,主要了 ...
- Python 实现图像快速傅里叶变换和离散余弦变换
图像的正交变换在数字图像的处理与分析中起着很重要的作用,被广泛应用于图像增强.去噪.压缩编码等众多领域.本文手工实现了二维离散傅里叶变换和二维离散余弦变换算法,并在多个图像样本上进行测试,以探究二者的 ...
随机推荐
- c语言开发浏览器插件
c语言开发浏览器插件 senk????sec???
- 线程安全与非线程安全集合说一下,底层怎么实现的(hashmap,concurrenthashmap)
Hashmap本质是数组加链表.根据key取得hash值,然后计算出数组下标,如果多个key对应到同一个下标,就用链表串起来,新插入的在前面. ConcurrentHashMap:在hashMap的基 ...
- Linux的运行级别和设置开机启动服务的方式
Linux的运行级别 什么是运行级别呢?简单点来说,运行级别就是操作系统当前正在运行的功能级别.级别是从0到6,具有不同的功能.这些级别定义在/ect/inittab文件中.这个文件是init程序寻找 ...
- HTML5 canvas绘制文本
demo.html <!DOCTYPE html> <html lang="zh"> <head> <meta charset=" ...
- 苹果的AR赌注仍然有很多需要证明的
苹果公司为开发者主题发布会做准备,其中一个更大的公告很可能是其增强现实平台的新变化.自从去年宣布ARKit以来,这家科技巨头几乎对其对AR的潜力抱有信心. 在很多讨论背后,人们都相信技术的实用性,但在 ...
- 网络编程和并发:1.简述 OSI 七层协议
1. 概念 Open System Interconnection : 开放互联系统 2. 图示 注:图片来源:https://www.cnblogs.com/maybe2030/p/4781555. ...
- Mac OS 网络设置教程 wifi设置与宽带设置详解
虽然所有设备连接无线网络的步骤都相差无几,但是Mac与windows系统还是不相同的,那么,苹果Mac怎么连接无线网络呢?针对此问题,本文就为大家介绍Mac网络的设置教程,有兴趣的朋友们可以了解下.如 ...
- css linear-gradient;心跳animation
css线性背景 background:linear-gradient(20deg,#ccffff,#ffcccc); transform transform:scale(1.5); transform ...
- php chunk_split()函数 语法
php chunk_split()函数 语法 作用:把字符串分割为一连串更小的部分.东莞大理石平板 语法:chunk_split(string,length,end) 参数: 参数 描述 string ...
- 远程仓库(GitHub)的使用
1.注册登录 在 GitHub 上注册登录 暂时忽略不讲 2.创建新的远程仓库 在GitHub网站上创建新的仓库.不管你是先在本地创建仓库还是先在远程创建仓库,要想把代码提交到远程仓库都是要先手动创建 ...