1 GridSearchCV实际上可以看做是for循环输入一组参数后再比较哪种情况下最优.

使用GirdSearchCV模板

# Use scikit-learn to grid search the batch size and epochs
import numpy
from sklearn.model_selection import GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
import pandas as pd
import os
os.environ["CUDA_VISIBLE_DEVICES"] = ""
# Function to create model, required for KerasClassifier
def create_model(optimizer='adam'):
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load dataset
dataset = pd.read_csv('diabetes.csv', )
# split into input (X) and output (Y) variables
X = dataset[['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
'Insulin','BMI', 'DiabetesPedigreeFunction', 'Age']]
Y = dataset['Outcome']
# create model
model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=10, verbose=0)
# define the grid search parameters
optimizer = ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam']
param_grid = dict(optimizer=optimizer)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
print(grid_result)
print('kkkk')
print(grid_result.cv_results_)
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))

参考:https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/

https://blog.csdn.net/weixin_41988628/article/details/83098130

2

利用随机搜索实现鸢尾花调参,

from sklearn.datasets import load_iris  # 自带的样本数据集
from sklearn.neighbors import KNeighborsClassifier # 要估计的是knn里面的参数,包括k的取值和样本权重分布方式
import matplotlib.pyplot as plt # 可视化绘图
from sklearn.model_selection import GridSearchCV,RandomizedSearchCV # 网格搜索和随机搜索
import pandas as pd
iris = pd.read_csv('../data/iris.csv', )
print(iris.head())
print(iris.columns)
X = iris[['Sepal.Length', 'Sepal.Width', 'Petal.Length','Petal.Width']] # 150个样本,4个属性
y = iris['Species'] # 150个类标号 k_range = range(1, 31) # 优化参数k的取值范围
weight_options = ['uniform', 'distance'] # 代估参数权重的取值范围。uniform为统一取权值,distance表示距离倒数取权值
# 下面是构建parameter grid,其结构是key为参数名称,value是待搜索的数值列表的一个字典结构
param_grid = {'n_neighbors':k_range,'weights':weight_options} # 定义优化参数字典,字典中的key值必须是分类算法的函数的参数名
print(param_grid) knn = KNeighborsClassifier(n_neighbors=5) # 定义分类算法。n_neighbors和weights的参数名称和param_grid字典中的key名对应 # ================================网格搜索=======================================
# 这里GridSearchCV的参数形式和cross_val_score的形式差不多,其中param_grid是parameter grid所对应的参数
# GridSearchCV中的n_jobs设置为-1时,可以实现并行计算(如果你的电脑支持的情况下)
grid = GridSearchCV(estimator = knn, param_grid = param_grid, cv=10, scoring='accuracy') #针对每个参数对进行了10次交叉验证。scoring='accuracy'使用准确率为结果的度量指标。可以添加多个度量指标
grid.fit(X, y) print('网格搜索-度量记录:',grid.cv_results_) # 包含每次训练的相关信息
print('网格搜索-最佳度量值:',grid.best_score_) # 获取最佳度量值
print('网格搜索-最佳参数:',grid.best_params_) # 获取最佳度量值时的代定参数的值。是一个字典
print('网格搜索-最佳模型:',grid.best_estimator_) # 获取最佳度量时的分类器模型 # 使用获取的最佳参数生成模型,预测数据
knn = KNeighborsClassifier(n_neighbors=grid.best_params_['n_neighbors'], weights=grid.best_params_['weights']) # 取出最佳参数进行建模
knn.fit(X, y) # 训练模型
print(knn.predict([[3, 5, 4, 2]])) # 预测新对象 # =====================================随机搜索===========================================
rand = RandomizedSearchCV(knn, param_grid, cv=10, scoring='accuracy', n_iter=10, random_state=5) #
rand.fit(X, y) print('随机搜索-度量记录:',grid.cv_results_) # 包含每次训练的相关信息
print('随机搜索-最佳度量值:',grid.best_score_) # 获取最佳度量值
print('随机搜索-最佳参数:',grid.best_params_) # 获取最佳度量值时的代定参数的值。是一个字典
print('随机搜索-最佳模型:',grid.best_estimator_) # 获取最佳度量时的分类器模型 # 使用获取的最佳参数生成模型,预测数据
knn = KNeighborsClassifier(n_neighbors=grid.best_params_['n_neighbors'], weights=grid.best_params_['weights']) # 取出最佳参数进行建模
knn.fit(X, y) # 训练模型
print(knn.predict([[3, 5, 4, 2]])) # 预测新对象 # =====================================自定义度量===========================================
from sklearn import metrics
# 自定义度量函数
def scorerfun(estimator, X, y):
y_pred = estimator.predict(X)
return metrics.accuracy_score(y, y_pred) rand = RandomizedSearchCV(knn, param_grid, cv=10, scoring='accuracy', n_iter=10, random_state=5) #
rand.fit(X, y) print('随机搜索-最佳度量值:',grid.best_score_) # 获取最佳度量值

参考:https://blog.csdn.net/luanpeng825485697/article/details/79831703

GridSearchCV和RandomizedSearchCV调参的更多相关文章

  1. GridSearchCV 与 RandomizedSearchCV 调参

    GridSearchCV    GridSearchCV的名字其实可以拆分为两部分,GridSearch和CV,即网格搜索和交叉验证. 这两个概念都比较好理解,网格搜索,搜索的是参数,即在指定的参数范 ...

  2. GridsearchCV调参

    在利用gridseachcv进行调参时,其中关于scoring可以填的参数在SKlearn中没有写清楚,就自己找了下,具体如下: parameters = {'eps':[0.3,0.4,0.5,0. ...

  3. 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明

    GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...

  4. python 机器学习中模型评估和调参

    在做数据处理时,需要用到不同的手法,如特征标准化,主成分分析,等等会重复用到某些参数,sklearn中提供了管道,可以一次性的解决该问题 先展示先通常的做法 import pandas as pd f ...

  5. scikit-learn随机森林调参小结

    在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注 ...

  6. scikit-learn 梯度提升树(GBDT)调参小结

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

  7. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  8. 调参必备---GridSearch网格搜索

    什么是Grid Search 网格搜索? Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果.其原理就像是在数组里找最 ...

  9. LightGBM 调参方法(具体操作)

     sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

随机推荐

  1. input 限制 中文输入

    ime-mode:disabled是什么? 解决: 1.     ime-mode版本:IE5+专有属性 继承性:无    语法:     ime-mode : auto | active | ina ...

  2. Java List对象集合按对象属性分组、分组汇总、过滤等操作示例

    import java.util.ArrayList; import java.util.List; import java.util.Map; import java.util.stream.Col ...

  3. Apache 配置内网站点

    基于端口常用于内部网站,不对外开发的网站 [root@Nagios-Server extra]# vim ../httpd.conf Listen 80 Listen 8000 Listen 9000 ...

  4. Nginx1.3.15导致Wordpress,Drupal等框架无限重定向的解决方案

    Wordpress建立的站点出现无限循环重定向问题.很多人遇到这个问题,并不是单纯Wordpress,Drupal, PHPCake等框架也都遇到同样的问题. 新版本的Nginx在收到 http:// ...

  5. Qt项目界面文件(.ui)及其作用(超详细)

    http://c.biancheng.net/view/1820.html Qt 项目中,后缀为“.ui”的文件是可视化设计的窗体的定义文件,如 widget.ui.双击项目文件目录树中的文件 wid ...

  6. Ubuntu 16.04安装N卡驱动、cuda、cudnn和tensorflow GPU版

    安装驱动 最开始在英伟达官网下载了官方驱动,安装之后无法登录系统,在登录界面反复循环,用cuda里的驱动也出现了同样的问题.最后解决办法是把驱动卸载之后,通过命令行在线安装驱动. 卸载驱动: sudo ...

  7. VB中IIF函数

    IIf 函数语法:IIf(表达式, 真值部分, 假值部分)根据表达式的值,表达式为真时,返回真值部分,表达式为假时,返回假部分.如:iif(a>0, "对","错& ...

  8. vi编辑器的快捷键汇总

    光标控制命令 本人qq群也有许多的技术文档,希望可以为你提供一些帮助(非技术的勿加). QQ群:   281442983 (点击链接加入群:http://jq.qq.com/?_wv=1027& ...

  9. 失控的未来交通工具 (LOJ 508,带权并查集,数论)

    LOJ 508 失控的未来交通工具 (带权并查集 + 数论) $ solution: $ 很综合的一道难题.看了让人不知所措,数据范围又大,题目描述又不清晰.只能说明这道题有很多性质,或者很多优化. ...

  10. java课堂测试2

    //信1605-2 20163428 刘宏琦import java.util.*;public class Number { /** * @param args */ public void pand ...