Description:

The elderly aunts always like to look for bargains and preferential merchandise. Now there is a shop carrying out group purchase promotion.

Rules are as follows :

There are r pieces of promotional items, and each item is only one. In the group purchase, everyone will buy one at least and have to conform the rules if they want to enjoy the benefit :

All the merchandise at a prime number has to be purchased ;

the merchandise at non-prime number cannot be chosen ;

The amount of money that each person pays is the square of the difference between the maximum and minimum value of the product he or she chooses. Notice that there may be several merchandises having the same price.

(If a person buys only one item, follow the rules and spend ¥ 0.00)

Assume that there are m people in a group, and everyone should enjoy the benefit.  Please arrange each person's choice of merchandise reasonably, so that the sum of money paid by m people can be the minimum.

The number of merchandise with a price of prime is n,m<=n , n<=5000

Input:

The input contains multiple test cases.

In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.

For any test case, the first line of input consists of two separated integers r and m.

(0<r<=100000,0<m<=1000)

The second line should consists of r space separated integers k1,k2...kr.

(1<ki<2^16,1<=i<=r)

ki represents the price of one item

Output:

Print one integer sum (sum<2^32)——the minimum number of money paid by m people.

忽略每行输出的末尾多余空格

样例输入

1
6 2
5 6 10 2 11 3

样例输出

9

题意:给你r个数,首先你要跳出其中的所有的素数(n<=5000),然后将这些素数分成m(<=n)个组。
每个组的权值为(这个组中最大元素-这个组最小元素)^2,问各组的权值的和最小为多少
思路:
首先我们想到先排序然后dp
先写转移方程,我们设dp[i][j]为前i个数分为j个集合的权值的和,则有

还有j那维需要循环,这个复杂度为n^3,显然是超时的。我们利用斜率优化算法优化成n^2的
将上面等式右边{}内的看成关于自变量k的一个函数val(k)
将k1带入得到

将k看成变量,分离变量与常量整理上式。


这个式子就像一个直线的方程,我们的目的是让dp[i][j]最小即截距dp[i][j]+a[i]^2最小
这个直线的斜率是2*a[i],也就是说坐标轴上有好多点,每个具体的k都确定一个点(a[k],dp[k-1][j-1]+a[k]^2)
我们转化成了一个线性规划问题,假设当前有好几个点,我们只需要维护他们是下凸的就行了
即如果有三个连续的点k1,k2,k3,那么斜率(k2,k1)<斜率(k2,k3)
这个我们用单调队列维护。这样就能减少复杂度
代码如下:
 #include <bits/stdc++.h>

 using namespace std;
typedef long long ll;
const ll inf = 1e18;
const int maxn = 5e5+;
const int maxm = ;
const int maxp = (<<)+;
bool check (int x){
for (int i=;i*i<=x;++i){
if (x%i==)
return false;
}
return true;
}
int prime[maxp];//保存素数
bool vis[maxp];
int r,n,m;
ll a[maxn],b[maxm];
ll dp[maxm][maxm];
int q[maxm];
int head,tail;
void getprime(int n)
{
int cnt = ;
memset(vis,,sizeof(vis));
for(int i=;i<n;i++)
{
if(!vis[i])
prime[cnt++]=i;
for(int j=;j<cnt&&i*prime[j]<n;j++)
{
vis[i*prime[j]]=;
if(i%prime[j]==)
break;
}
}
return ;
}
int main()
{
int t;
getprime(maxp);
//freopen("de.txt","r",stdin);
scanf("%d",&t);
dp[][]=;
for (int i=;i<maxm;++i)
dp[i][]=inf;
while (t--){
n = ;
ll x;
scanf("%d%d",&r,&m);
for (int i=;i<r;++i){
scanf("%lld",&x);
if (!vis[x]){
a[++n] = x;
}
}
sort(a+,a+n+);
for (int i=;i<=n;++i){
b[i] = a[i]*a[i];
}
for (int j=;j<=m;++j){
head = ,tail = ;
dp[][j]=inf;
for (int i=;i<=n;++i){
while (tail-head>=){
int x=q[tail-],y=q[tail-];
double v1,v2;
if (a[y]==a[x]) v1 = inf;
else v1=(dp[y-][j-]+b[y]-dp[x-][j-]-b[x])/(2.0*(a[y]-a[x]));
if (a[y]==a[i]) v2 = inf;
else v2=(dp[i-][j-]+b[i]-dp[y-][j-]-b[y])/(2.0*(a[i]-a[y]));
if (v1>v2)
tail--;
else
break;
}
q[tail++] = i;
while (tail-head>=){
int x=q[head],y=q[head+];
double v1;
if (a[y]==a[x]) v1 = inf;
else v1=(dp[y-][j-]+b[y]-dp[x-][j-]-b[x])/(2.0*(a[y]-a[x]));
if (v1<a[i])
head++;
else
break;
}
int tmp = q[head];
dp[i][j] = dp[tmp-][j-]+(ll)(a[i]-a[tmp])*(ll)(a[i]-a[tmp]);
//printf("%lld %d %d\n",dp[i][j],i,j);
}
}
printf("%lld\n",dp[n][m]);
}
return ;
}

 

2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 D Merchandise (斜率优化)的更多相关文章

  1. 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 H题 Rock Paper Scissors Lizard Spock.(FFT字符串匹配)

    2018 ACM-ICPC 中国大学生程序设计竞赛线上赛:https://www.jisuanke.com/contest/1227 题目链接:https://nanti.jisuanke.com/t ...

  2. 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 F题 Clever King(最小割)

    2018 ACM-ICPC 中国大学生程序设计竞赛线上赛:https://www.jisuanke.com/contest/1227 题目链接:https://nanti.jisuanke.com/t ...

  3. 计蒜客 25985.Goldbach-米勒拉宾素数判定(大素数) (2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 B)

    若干年之前的一道题,当时能写出来还是超级开心的,虽然是个板子题.一直忘记写博客,备忘一下. 米勒拉判大素数,关于米勒拉宾是个什么东西,传送门了解一下:biubiubiu~ B. Goldbach 题目 ...

  4. 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 I. Reversion Count (java大数)

    Description: There is a positive integer X, X's reversion count is Y. For example, X=123, Y=321; X=1 ...

  5. 2017年中国大学生程序设计竞赛-中南地区赛暨第八届湘潭市大学生计算机程序设计大赛题解&源码(A.高斯消元,D,模拟,E,前缀和,F,LCS,H,Prim算法,I,胡搞,J,树状数组)

    A------------------------------------------------------------------------------------ 题目链接:http://20 ...

  6. 第 46 届 ICPC 国际大学生程序设计竞赛亚洲区域赛(沈阳)

    有时候,很简单的模板题,可能有人没有做出来,(特指 I ),到时候一定要把所有的题目全部看一遍 目录 B 题解 E F 题解 H I 题解&代码 J B 输入样例 3 2 1 2 1 2 3 ...

  7. 2018中国大学生程序设计竞赛 - 网络选拔赛 1001 - Buy and Resell 【优先队列维护最小堆+贪心】

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6438 Buy and Resell Time Limit: 2000/1000 MS (Java/O ...

  8. 2018中国大学生程序设计竞赛 - 网络选拔赛 1010 YJJ's Salesman 【离散化+树状数组维护区间最大值】

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6447 YJJ's Salesman Time Limit: 4000/2000 MS (Java/O ...

  9. 2018中国大学生程序设计竞赛 - 网络选拔赛 1009 - Tree and Permutation 【dfs+树上两点距离和】

    Tree and Permutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

随机推荐

  1. 16/7/8_PHP-设置cookie会话控制(session与cookie)

    设置cookie PHP设置Cookie最常用的方法就是使用setcookie函数,setcookie具有7个可选参数,我们常用到的为前5个: name( Cookie名)可以通过$_COOKIE[' ...

  2. C# 模拟登陆

    原理 我们知道,一般需要登录的网站,服务器和客户端都会有一段时间的会话保持,而这个会话保持是在登录时候建立的, 服务端和客户端都会持有这个KEY,在后续访问时,都需要核对这两个KEY是否一致. 而客户 ...

  3. LeetCode——141 设计链表

    题目: 简单说下思路: 用两个指针,一个跑得快,一个跑得慢(例如一个每次前进两步,一个前进一步),这样只要快指针不会撞上NULL(如果遇到了NULL的情况那么必然不存在环),快指针肯定会和慢指针碰面( ...

  4. idea的热部署

    1:先找到你要热部署的tomcat之后 ,在设置tomcat时  先选择 server,里面有On 'Update' action ()  和 On frame deactivation 这两项  都 ...

  5. python3.5+django2.0快速入门(一)

    因为这篇教程需要用到anaconda的一些操作,如果还不懂anaconda的操作的同学可以看下这篇文章python 入门学习之anaconda篇. 创建python3+的开发环境 直接在终端输入:co ...

  6. [Python3 填坑] 002 isdecimal() 与 isdigit() 的区别 + isnumeric() 的补充

    目录 1. print( 坑的信息 ) 2. isdecimal() 官方文档 3. isdigit() 官方文档 4. 举例 (1) 先说结论 (2) 示例 5. 补充 isnumeric() (1 ...

  7. JAVA总结--Spring框架全解

    一.Spring简介 Spring 是个java企业级应用的开源开发框架.Spring主要用来开发Java应用,但是有些扩展是针对构建J2EE平台的web应用.Spring 框架目标是简化Java企业 ...

  8. 解决在data里面获取一个固定的img值

    正常情况下在data里面申明,在img标签里面通过 :src应用就行了,但是如果是直接申明引用是没效果的: html: <div class="logo"> <i ...

  9. webpack打包html里的img图片

    对待css里的图片, 因为已经通过引入css文件到js,打包了,可以正常通过module.rules.test检测到,然后正常打包. 但是对于html里的图片, 这个需要安装一个插件html-with ...

  10. 第二次java面试(用友山东济南分公司)

    坐标:山东潍坊公共实训基地 面试单位:用友济南分公司(来了一位HR和技术经理) 本人状态:距离离校15天 宣讲: 1.女HR和男技术经理来到我们专业提前准备好的教室,先宣传海报和发传单,然后看了4个3 ...