题目链接:POJ 3130

Problem Description

After counting so many stars in the sky in his childhood, Isaac, now an astronomer and a mathematician uses a big astronomical telescope and lets his image processing program count stars. The hardest part of the program is to judge if shining object in the sky is really a star. As a mathematician, the only way he knows is to apply a mathematical definition of stars.

The mathematical definition of a star shape is as follows: A planar shape \(F\) is star-shaped if and only if there is a point \(C \in F\) such that, for any point \(P \in F\), the line segment \(CP\) is contained in \(F\). Such a point \(C\) is called a center of \(F\). To get accustomed to the definition let’s see some examples below.

The first two are what you would normally call stars. According to the above definition, however, all shapes in the first row are star-shaped. The two in the second row are not. For each star shape, a center is indicated with a dot. Note that a star shape in general has infinitely many centers. Fore Example, for the third quadrangular shape, all points in it are centers.

Your job is to write a program that tells whether a given polygonal shape is star-shaped or not.

Input

The input is a sequence of datasets followed by a line containing a single zero. Each dataset specifies a polygon, and is formatted as follows.

n
x1 y1
x2 y2 … xn yn

The first line is the number of vertices, \(n\), which satisfies \(4 \le n \le 50\). Subsequent \(n\) lines are the \(x\)- and \(y\)-coordinates of the \(n\) vertices. They are integers and satisfy \(0 \le x_i \le 10000\) and \(0 \le yi \le 10000 (i = 1, …, n)\). Line segments \((x_i, y_i)–(x_{i + 1}, y_{i + 1}) (i = 1, …, n − 1)\) and the line segment \((x_n, y_n)–(x_1, y_1)\) form the border of the polygon in the counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions.

You may assume that the polygon is simple, that is, its border never crosses or touches itself. You may assume assume that no three edges of the polygon meet at a single point even when they are infinitely extended.

Output

For each dataset, output “1” if the polygon is star-shaped and “0” otherwise. Each number must be in a separate line and the line should not contain any other characters.

Sample Input

6
66 13
96 61
76 98
13 94
4 0
45 68
8
27 21
55 14
93 12
56 95
15 48
38 46
51 65
64 31
0

Sample Output

1
0

Source

Japan 2006

Solution

题意

给定 \(n\) 个点的多边形,求多边形是否有核。

题解

半平面交

半平面交求多边形的核的面积,如果面积为 0,就没有核。

Code

#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e3 + 10; inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
} class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
inline void input() {
scanf("%lf%lf", &x, &y);
}
bool operator<(const Point &a) const {
return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
}
bool operator==(const Point &a) const {
return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
}
db dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
db dis(const Point a) {
return sqrt(dis2(a));
} db dis2() {
return x * x + y * y;
}
db dis() {
return sqrt(dis2());
}
Point operator+(const Point a) {
return Point(x + a.x, y + a.y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
Point operator*(double p) {
return Point(x * p, y * p);
}
Point operator/(double p) {
return Point(x / p, y / p);
}
db dot(const Point a) {
return x * a.x + y * a.y;
}
db cross(const Point a) {
return x * a.y - y * a.x;
}
db ang(Point a) {
return acos((a.dis() * dis()) / dot(a));
}
};
typedef Point Vector; Point p[maxn], ip[maxn]; class Line {
public:
Point s, e;
db angle;
Line() {}
Line(Point s, Point e) : s(s), e(e) {}
inline void input() {
s.input();e.input();
}
bool operator<(const Line &a) const {
Line l = a;
if(dcmp(angle - l.angle) == 0) {
return l.toLeftTest(s) == 1;
}
return angle < l.angle;
}
void get_angle() {
angle = atan2(e.y - s.y, e.x - s.x);
}
int toLeftTest(Point p) {
if((e - s).cross(p - s) > 0) return 1;
else if((e - s).cross(p - s) < 0) return -1;
return 0;
}
int linecrossline(Line l) {
if(dcmp((e - s).cross(l.e - l.s)) == 0) {
if(dcmp((l.s - e).cross(l.e - s)) == 0) {
return 0;
}
return 1;
}
return 2;
}
Point crosspoint(Line l) {
db a1 = (l.e - l.s).cross(s - l.s);
db a2 = (l.e - l.s).cross(e - l.s);
db x = (s.x * a2 - e.x * a1) / (a2 - a1);
db y = (s.y * a2 - e.y * a1) / (a2 - a1);
if(dcmp(x) == 0) x = 0;
if(dcmp(y) == 0) y = 0;
return Point(x, y);
}
}; Line l[maxn], q[maxn]; db half_plane(int cnt) {
sort(l + 1, l + 1 + cnt);
int tmp = 1;
for(int i = 2; i <= cnt; ++i) {
if(dcmp(l[i].angle - l[tmp].angle) == 1) l[++tmp] = l[i];
}
cnt = tmp;
int head = 1, tail = 2;
q[1] = l[1], q[2] = l[2];
for(int i = 3; i <= cnt; ++i) {
while(head < tail && l[i].toLeftTest(q[tail].crosspoint(q[tail - 1])) == -1) {
--tail;
}
while(head < tail && l[i].toLeftTest(q[head].crosspoint(q[head + 1])) == -1) {
++head;
}
q[++tail] = l[i];
} while(head < tail && q[head].toLeftTest(q[tail].crosspoint(q[tail - 1])) == -1) {
--tail;
}
while(head < tail && q[tail].toLeftTest(q[head].crosspoint(q[head + 1])) == -1) {
++head;
} if(tail - head + 1 <= 2) {
return 0.0;
} tmp = 0;
for(int i = head; i < tail; ++i) {
ip[++tmp] = q[i].crosspoint(q[i + 1]);
}
ip[++tmp] = q[head].crosspoint(q[tail]);
db ans = 0;
for(int i = 3; i <= tmp; ++i) {
ans += (ip[i - 1] - ip[1]).cross(ip[i] - ip[1]);
}
return ans * 0.5;
} int main() {
int n;
while(~scanf("%d", &n) && n) {
int cnt = 0;
for(int i = 1; i <= n; ++i) {
p[i].input();
if(i > 1) {
l[++cnt].e = p[i];
l[cnt].s = p[i - 1];
l[cnt].get_angle();
}
}
l[++cnt].e = p[1];
l[cnt].s = p[n];
l[cnt].get_angle();
if(dcmp(half_plane(cnt)) == 0) {
printf("0\n");
} else {
printf("1\n");
}
}
return 0;
}

POJ 3130 How I Mathematician Wonder What You Are! (半平面交)的更多相关文章

  1. POJ 3130 How I Mathematician Wonder What You Are! (半平面相交)

    Description After counting so many stars in the sky in his childhood, Isaac, now an astronomer and a ...

  2. poj 3130 How I Mathematician Wonder What You Are! - 求多边形有没有核 - 模版

    /* poj 3130 How I Mathematician Wonder What You Are! - 求多边形有没有核 */ #include <stdio.h> #include ...

  3. POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交

    题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...

  4. poj 3130 How I Mathematician Wonder What You Are!

    http://poj.org/problem?id=3130 #include <cstdio> #include <cstring> #include <algorit ...

  5. POJ 3130 How I Mathematician Wonder What You Are!(半平面交求多边形的核)

    题目链接 题意 : 给你一个多边形,问你该多边形中是否存在一个点使得该点与该多边形任意一点的连线都在多边形之内. 思路 : 与3335一样,不过要注意方向变化一下. #include <stdi ...

  6. poj 3130 How I Mathematician Wonder What You Are! 【半平面交】

    求多边形的核,直接把所有边求半平面交判断有无即可 #include<iostream> #include<cstdio> #include<algorithm> # ...

  7. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  8. 【POJ 3335】 Rotating Scoreboard (多边形的核- - 半平面交应用)

    Rotating Scoreboard Description This year, ACM/ICPC World finals will be held in a hall in form of a ...

  9. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

随机推荐

  1. KEIL Code RO-data RW-data ZI-data 【转】

    来自:http://jinyong314.blog.163.com/blog/static/30165742201052225415901/ 字节 8位半字 16位字   32位 Code, RO-d ...

  2. NetworkComms V2版本与V3版本语法的差异

    NetworkComms网络通信框架序言 NetworkComms通信框架中V3版本是一次重要的升级,底层做了诸多改变,但语法上与V2版本相比,差不并不大. 监听端口: V3中 IPEndPoint ...

  3. upc组队赛6 Progressive Scramble【模拟】

    Progressive Scramble 题目描述 You are a member of a naive spy agency. For secure communication,members o ...

  4. upc组队赛5 Hunter’s Apprentice 【判断多边形边界曲线顺逆时针】

    Hunter's Apprentice 题目描述 When you were five years old, you watched in horror as a spiked devil murde ...

  5. Rust <1>:数据类型、变量、可变性、常量、隐藏

    rust 是强类型语言,所有变量.常量都必须有明确的数据类型:很多情况下,省略类型声明,编译器可自动推导,但不是所有情况下都会成功. rust 有整型.浮点型.布尔型.字符型.数组.元组.枚举.结构体 ...

  6. Rust <0>:源代码组织,Cargo 入门

    Rust 源代码组织,使用配套的 Cargo 工具,其功能强大,程序员可摆脱 C/C++ 中需要自行维护 make.cmake 之类配置的工作量. 初始化一个项目: cargo new --bin h ...

  7. Linux(三)—— 项目部署环境搭建

    目录 项目部署环境搭建 一.linux上网 二.rpm包管理 1.光盘挂载 2.安装卸载rpm包 3.查询是否安装 4.查看软件包 5.互相依赖关系的软件包 三.yum包管理 1.使用aliyun的y ...

  8. MES training

    unique identity 1.project name , namespace 2. select XML (not html) 3. view and controller will be i ...

  9. vue组件库的基本开发步骤(源代码)

    上次发布的随笔忘记提供源代码了,今天特地来补充,如果有什么问题,欢迎大家为我修改指正. vue.config.js文件: const path = require('path') function r ...

  10. ionic2(3) 密码键盘组件 ionic2-pincode-input 使用

    1.效果展示: 2.安装: npm install ionic2-pincode-input --save 3.app.module.ts配置 app.module.ts import { NgMod ...