DZY Loves Math

对于正整数 $n$,定义 $f(n)$ 为 $n$ 所含质因子的最大幂指数。

例如 $f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0$

给定正整数 $a,b$,求 $ \sum_{i=1..a} \sum_{j=1..b} {f(gcd(i,j))}$。


Sol

根据莫比乌斯反演可以得出

$ \sum_{i=1..a} \sum_{j=1..b} {f(gcd(i,j))}$

=$\sum_{d} g[d]  \lfloor n/d \rfloor  \lfloor m/d \rfloor $

其中 $g[d]=\sum_{d} \mu[d]*f[n/d]$

后面整数分块,主要问题再求g

我们假设当前求g[x].

先考虑所有质因子次数都是一样的c,那么f[n/d]只有c和c-1两种取值,其中c-1仅在所有质因子出现一次时取到。

那么这时的答案是

-1  n有奇数个质因子

1   n有偶数个质因子

0   n=1

如果x的所有质因子的有任意一对次数不一样,那么g[x]=0.

因为如果次数<Max的质因子,那么这些质因子在乘莫比乌斯系数是贡献是0,也就是在最外面乘了0

考虑怎么判断一个数的质因子次数是不是都一样

记a[x]表示x的最小质因子,b[x]表示a[x]的次数。

转移时类似dp

DZY Loves Math的更多相关文章

  1. BZOJ 3309: DZY Loves Math

    3309: DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 761  Solved: 401[Submit][Status ...

  2. 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化

    3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...

  3. [BZOJ3561] DZY Loves Math VI

    (14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www ...

  4. BZOJ 3512: DZY Loves Math IV [杜教筛]

    3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小 ...

  5. ●BZOJ 3309 DZY Loves Math

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...

  6. DZY Loves Math 系列详细题解

    BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd ...

  7. 【BZOJ3561】DZY Loves Math VI (数论)

    [BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...

  8. BZOJ 3561 DZY Loves Math VI

    BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...

  9. 【BZOJ3309】DZY Loves Math(莫比乌斯反演)

    [BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...

  10. 【BZOJ3512】DZY Loves Math IV(杜教筛)

    [BZOJ3512]DZY Loves Math IV(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\] 其中\(n\le 10^5,m\l ...

随机推荐

  1. Python变量和字符串详解

    Python变量和字符串详解 几个月前,我开始学习个人形象管理,从发型.妆容.服饰到仪表仪态,都开始做全新改造,在塑造个人风格时,最基础的是先了解自己属于哪种风格,然后找到参考对象去模仿,可以是自己欣 ...

  2. mysqladmin - 管理 MySQL 服务器、获取运行状态

    官方文档 mysqladmin 是管理 MySQL 服务器的客户端,可以用来检测服务器的配置和当前状态.创建和删除数据库等. 1. mysqladmin 的调用语法 shell> mysqlad ...

  3. Vue Cli 3:创建项目

    一 简介 Vue CLI 是一个基于 Vue.js 进行快速开发的完整系统,有几个独立的部分. 1 CLI (@vue/cli) 是一个全局安装的 npm 包,提供了终端里的 vue 命令.(vue ...

  4. Convolutional Neural Networks(3):Convolution and Channels

    在CNN(1)和CNN(2)两篇文章中,主要说明的是CNN的基本架构和权值共享(Weight Sharing),本文则重点介绍卷积的部分. 首先,在卷积之前,我们的数据是4D的tensor(width ...

  5. [SOL] #148. 数字格子问题

    说实话这题确实挺菜的... 废话少说,直接上代码^O^ Code: #include <bits/stdc++.h> using namespace std; inline int rea ...

  6. LayaBox 常用技巧

    1.修改IDE的菜单 找到安装路径的LayaAirIDE\resources\app\out\vs\layaEditor\renders\laya.editorUI.xml 注意事项: 1.mask的 ...

  7. javascript判断chrome浏览器的方法

    var isChrome = window.navigator.userAgent.indexOf("Chrome") !== -1; if (isChrome) { alert( ...

  8. Python Web开发:Django+BootStrap实现简单的博客项目

    创建blog的项目结构 关于如何创建一个Django项目,请查看[Python Web开发:使用Django框架创建HolleWorld项目] 创建blog的数据模型 创建一个文章类 所有开发都是数据 ...

  9. 2019-1-5-Windows-的-Pen-协议

    title author date CreateTime categories Windows 的 Pen 协议 lindexi 2019-01-05 11:14:49 +0800 2019-01-0 ...

  10. 93-基于ATOM E3825的3U PXIe 主板控制器

    基于ATOM E3825的3U PXIe 主板控制器 一.板卡概述: 本主板采用intel ATOM 处理器 E3825 设计主板控制器,是一种低成本.低功耗解决方案.板卡采用Intel Bay Tr ...