DZY Loves Math

对于正整数 $n$,定义 $f(n)$ 为 $n$ 所含质因子的最大幂指数。

例如 $f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0$

给定正整数 $a,b$,求 $ \sum_{i=1..a} \sum_{j=1..b} {f(gcd(i,j))}$。


Sol

根据莫比乌斯反演可以得出

$ \sum_{i=1..a} \sum_{j=1..b} {f(gcd(i,j))}$

=$\sum_{d} g[d]  \lfloor n/d \rfloor  \lfloor m/d \rfloor $

其中 $g[d]=\sum_{d} \mu[d]*f[n/d]$

后面整数分块,主要问题再求g

我们假设当前求g[x].

先考虑所有质因子次数都是一样的c,那么f[n/d]只有c和c-1两种取值,其中c-1仅在所有质因子出现一次时取到。

那么这时的答案是

-1  n有奇数个质因子

1   n有偶数个质因子

0   n=1

如果x的所有质因子的有任意一对次数不一样,那么g[x]=0.

因为如果次数<Max的质因子,那么这些质因子在乘莫比乌斯系数是贡献是0,也就是在最外面乘了0

考虑怎么判断一个数的质因子次数是不是都一样

记a[x]表示x的最小质因子,b[x]表示a[x]的次数。

转移时类似dp

DZY Loves Math的更多相关文章

  1. BZOJ 3309: DZY Loves Math

    3309: DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 761  Solved: 401[Submit][Status ...

  2. 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化

    3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...

  3. [BZOJ3561] DZY Loves Math VI

    (14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www ...

  4. BZOJ 3512: DZY Loves Math IV [杜教筛]

    3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小 ...

  5. ●BZOJ 3309 DZY Loves Math

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...

  6. DZY Loves Math 系列详细题解

    BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd ...

  7. 【BZOJ3561】DZY Loves Math VI (数论)

    [BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...

  8. BZOJ 3561 DZY Loves Math VI

    BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...

  9. 【BZOJ3309】DZY Loves Math(莫比乌斯反演)

    [BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...

  10. 【BZOJ3512】DZY Loves Math IV(杜教筛)

    [BZOJ3512]DZY Loves Math IV(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\] 其中\(n\le 10^5,m\l ...

随机推荐

  1. ICPC2019上海区域赛 部分题解(正在更新)

    K. Color Graph 题意: 给定一个简单图,点个数<=16,删去部分边后,使得该图中无边数为奇数得环,问剩下的边数最大为多少? 思路: 如果一个图中无奇数边的环,那么这个图一定是个二分 ...

  2. Java IO(3)

    字符流相关 字符流基本上可以类比字节流 只不过是将字节流的byte 换为char. 最根本的两个类是Reader以及Writer Reader的子类有:BufferedReader, CharArra ...

  3. Caused by: java.lang.ClassNotFoundException: com.alibaba.dubbo.common.Version

    <dependency> <groupId>com.alibaba.boot</groupId> <artifactId>dubbo-spring-bo ...

  4. php不支持多线程怎么办

    PHP 默认并不支持多线程,要使用多线程需要安装 pthread 扩展,而要安装 pthread 扩展,必须使用 --enable-maintainer-zts 参数重新编译 PHP,这个参数是指定编 ...

  5. for in 和for of的区别

    for in 和for of的区别:https://www.jianshu.com/p/c43f418d6bf0 1 遍历数组通常用for循环 ES5的话也可以使用forEach,ES5具有遍历数组功 ...

  6. hdu 4001 To Miss Our Children Time( sort + DP )

    To Miss Our Children Time Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Jav ...

  7. P2172 [国家集训队]部落战争(最小路径覆盖)

    P2172 [国家集训队]部落战争 每个点仅走一次:最小路径覆盖 套路地拆点,具体看代码中的$draw()$ 流量每增加1,意味着一支军队可以多走一格,代价减少1 最后答案即为总点数$-dinic() ...

  8. Leetcode Lect3 时间复杂度/空间复杂度

    时间复杂度 复杂度 可能对应的算法 备注 O(1) 位运算 常数级复杂度,一般面试中不会有 O(logn) 二分法,倍增法,快速幂算法,辗转相除法   O(n) 枚举法,双指针算法,单调栈算法,KMP ...

  9. activity 生命周期 http://stackoverflow.com/questions/8515936/android-activity-life-cycle-what-are-all-these-methods-for

    331down voteaccepted See it in Activity Lifecycle (at Android Developers). onCreate(): Called when t ...

  10. Identity MVC:UI

    基于原来做的cookie认证的代码:MvcCookieAuthSample 增加登陆和退出的方法: 增加Login和SignIn这两个Action方法. 在Views下面创建Account文件夹,然后 ...