DZY Loves Math
DZY Loves Math
对于正整数 $n$,定义 $f(n)$ 为 $n$ 所含质因子的最大幂指数。
例如 $f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0$
给定正整数 $a,b$,求 $ \sum_{i=1..a} \sum_{j=1..b} {f(gcd(i,j))}$。
Sol
根据莫比乌斯反演可以得出
$ \sum_{i=1..a} \sum_{j=1..b} {f(gcd(i,j))}$
=$\sum_{d} g[d] \lfloor n/d \rfloor \lfloor m/d \rfloor $
其中 $g[d]=\sum_{d} \mu[d]*f[n/d]$
后面整数分块,主要问题再求g
我们假设当前求g[x].
先考虑所有质因子次数都是一样的c,那么f[n/d]只有c和c-1两种取值,其中c-1仅在所有质因子出现一次时取到。
那么这时的答案是
-1 n有奇数个质因子
1 n有偶数个质因子
0 n=1
如果x的所有质因子的有任意一对次数不一样,那么g[x]=0.
因为如果次数<Max的质因子,那么这些质因子在乘莫比乌斯系数是贡献是0,也就是在最外面乘了0
考虑怎么判断一个数的质因子次数是不是都一样
记a[x]表示x的最小质因子,b[x]表示a[x]的次数。
转移时类似dp
DZY Loves Math的更多相关文章
- BZOJ 3309: DZY Loves Math
3309: DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 761 Solved: 401[Submit][Status ...
- 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化
3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...
- [BZOJ3561] DZY Loves Math VI
(14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www ...
- BZOJ 3512: DZY Loves Math IV [杜教筛]
3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小 ...
- ●BZOJ 3309 DZY Loves Math
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...
- DZY Loves Math 系列详细题解
BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd ...
- 【BZOJ3561】DZY Loves Math VI (数论)
[BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
- 【BZOJ3309】DZY Loves Math(莫比乌斯反演)
[BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...
- 【BZOJ3512】DZY Loves Math IV(杜教筛)
[BZOJ3512]DZY Loves Math IV(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\] 其中\(n\le 10^5,m\l ...
随机推荐
- Python变量和字符串详解
Python变量和字符串详解 几个月前,我开始学习个人形象管理,从发型.妆容.服饰到仪表仪态,都开始做全新改造,在塑造个人风格时,最基础的是先了解自己属于哪种风格,然后找到参考对象去模仿,可以是自己欣 ...
- mysqladmin - 管理 MySQL 服务器、获取运行状态
官方文档 mysqladmin 是管理 MySQL 服务器的客户端,可以用来检测服务器的配置和当前状态.创建和删除数据库等. 1. mysqladmin 的调用语法 shell> mysqlad ...
- Vue Cli 3:创建项目
一 简介 Vue CLI 是一个基于 Vue.js 进行快速开发的完整系统,有几个独立的部分. 1 CLI (@vue/cli) 是一个全局安装的 npm 包,提供了终端里的 vue 命令.(vue ...
- Convolutional Neural Networks(3):Convolution and Channels
在CNN(1)和CNN(2)两篇文章中,主要说明的是CNN的基本架构和权值共享(Weight Sharing),本文则重点介绍卷积的部分. 首先,在卷积之前,我们的数据是4D的tensor(width ...
- [SOL] #148. 数字格子问题
说实话这题确实挺菜的... 废话少说,直接上代码^O^ Code: #include <bits/stdc++.h> using namespace std; inline int rea ...
- LayaBox 常用技巧
1.修改IDE的菜单 找到安装路径的LayaAirIDE\resources\app\out\vs\layaEditor\renders\laya.editorUI.xml 注意事项: 1.mask的 ...
- javascript判断chrome浏览器的方法
var isChrome = window.navigator.userAgent.indexOf("Chrome") !== -1; if (isChrome) { alert( ...
- Python Web开发:Django+BootStrap实现简单的博客项目
创建blog的项目结构 关于如何创建一个Django项目,请查看[Python Web开发:使用Django框架创建HolleWorld项目] 创建blog的数据模型 创建一个文章类 所有开发都是数据 ...
- 2019-1-5-Windows-的-Pen-协议
title author date CreateTime categories Windows 的 Pen 协议 lindexi 2019-01-05 11:14:49 +0800 2019-01-0 ...
- 93-基于ATOM E3825的3U PXIe 主板控制器
基于ATOM E3825的3U PXIe 主板控制器 一.板卡概述: 本主板采用intel ATOM 处理器 E3825 设计主板控制器,是一种低成本.低功耗解决方案.板卡采用Intel Bay Tr ...