DZY Loves Math
DZY Loves Math
对于正整数 $n$,定义 $f(n)$ 为 $n$ 所含质因子的最大幂指数。
例如 $f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0$
给定正整数 $a,b$,求 $ \sum_{i=1..a} \sum_{j=1..b} {f(gcd(i,j))}$。
Sol
根据莫比乌斯反演可以得出
$ \sum_{i=1..a} \sum_{j=1..b} {f(gcd(i,j))}$
=$\sum_{d} g[d] \lfloor n/d \rfloor \lfloor m/d \rfloor $
其中 $g[d]=\sum_{d} \mu[d]*f[n/d]$
后面整数分块,主要问题再求g
我们假设当前求g[x].
先考虑所有质因子次数都是一样的c,那么f[n/d]只有c和c-1两种取值,其中c-1仅在所有质因子出现一次时取到。
那么这时的答案是
-1 n有奇数个质因子
1 n有偶数个质因子
0 n=1
如果x的所有质因子的有任意一对次数不一样,那么g[x]=0.
因为如果次数<Max的质因子,那么这些质因子在乘莫比乌斯系数是贡献是0,也就是在最外面乘了0
考虑怎么判断一个数的质因子次数是不是都一样
记a[x]表示x的最小质因子,b[x]表示a[x]的次数。
转移时类似dp
DZY Loves Math的更多相关文章
- BZOJ 3309: DZY Loves Math
3309: DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 761 Solved: 401[Submit][Status ...
- 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化
3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...
- [BZOJ3561] DZY Loves Math VI
(14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www ...
- BZOJ 3512: DZY Loves Math IV [杜教筛]
3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小 ...
- ●BZOJ 3309 DZY Loves Math
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...
- DZY Loves Math 系列详细题解
BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd ...
- 【BZOJ3561】DZY Loves Math VI (数论)
[BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
- 【BZOJ3309】DZY Loves Math(莫比乌斯反演)
[BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...
- 【BZOJ3512】DZY Loves Math IV(杜教筛)
[BZOJ3512]DZY Loves Math IV(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\] 其中\(n\le 10^5,m\l ...
随机推荐
- 用notepad++ 打造轻量级Java编译器
http://blog.163.com/jackie_howe/blog/static/19949134720125591752396/ 用notepad++ 打造轻量级Java编译器 2012-06 ...
- PAT甲级【2019年9月考题】——A1164 DijkstraSequence【30】
7-4 Dijkstra Sequence (30 分) Dijkstra's algorithm is one of the very famous greedy algorithms. It is ...
- c# Autofac依赖注入
public class Container { /// <summary> /// IOC容器 /// </summary> public static IContainer ...
- [CF960G]Bandit Blues(第一类斯特林数+分治卷积)
Solution: 先考虑前缀,设 \(f(i, j)\) 为长度为 \(i\) 的排列中满足前缀最大值为自己的数有 \(j\) 个的排列数. 假设新加一个数 \(i+1\) 那么会有: \[ f ...
- [Codeforces600E] Lomsat gelral(树上启发式合并)
[Codeforces600E] Lomsat gelral(树上启发式合并) 题面 给出一棵N个点的树,求其所有子树内出现次数最多的颜色编号和.如果多种颜色出现次数相同,那么编号都要算进答案 N≤1 ...
- 2019牛客暑期多校训练营(第一场) - A - Equivalent Prefixes - 单调栈
A - Equivalent Prefixes - 单调栈 题意:给定两个n个元素的数组a,b,它们的前p个元素构成的数组是"等价"的,求p的最大值."等价"的 ...
- traceroute学习
之前只知道ping telnet命令,后面学习了traceroute命令 ping最常用的,看是否可以ping通ip,查看网络是否可达 telnet探测端口是否通,telnet ip port tra ...
- vue 防抖节流函数——组件封装
防抖(debounce) 所谓防抖,就是指触发事件后在 n 秒内函数只能执行一次,如果在 n 秒内又触发了事件,则会重新计算函数执行时间. 节流(throttle) 所谓节流,就是指连续触发事件但是在 ...
- CentOS7.6系统安装zabbix3.4.8客户端
一. 准备安装包 将本地的zabbix-3.4.8软件包上传至服务器, 二. 安装依赖包 安装依赖包:yum install gcc* pcre* psmisc -y 三. 安 ...
- 233-基于TMS320C6678+XC7K325T的CPCIe开发平台
基于TMS320C6678+XC7K325T的CPCIe开发平台 一.板卡概述 该DSP+FPGA高速信号采集处理板由我公司自主研发,包含一片TI DSP TMS320C6678和一片 ...