hdu_3535 (AreYouBusy)
http://acm.hdu.edu.cn/showproblem.php?pid=3535
题意:
给你n个工作集合,给你T的时间去做它们。给你m和s,说明这个工作集合有m件事可以做,它们是s类的工作集合(s=0,1,2,s=0说明这m件事中最少得做一件,s=1说明这m件事中最多只能做一件,s=2说明这m件事你可以做也可以不做)。再给你ci和gi代表你做这件事要用ci的时间,能获得gi的快乐值。求在T的时间内你能获得的最大快乐值。
分析:
首先如果存在最优解, 我们可以互换不同工作集合的处理顺序, 依然能得到最优解. 那么我们下面只需要处理每个单独的工作集合即可.
令dp[i][j]==x表示处理完前i组工作集,所花时间<=j时的快乐值为x。每得到一组工作就进行一次DP,所以dp[i]为第i组的结果。下面对三种情况进行讨论。
1. 该集合内至少要选1件工作时. 要保证至少选1个第i类工作, 可以从第i-1类的结果dp[i-1]来更新dp[i].也可以用 01背包的思想, 从本类的前一个工作更新后一个工作.
初始化:dp[i]全为负无穷.(即-INF)
状态转移方程为:
dp[i][k]=max{dp[i][k],dp[i-1][k-cost[j]]+val[k],dp[i][k-cost[j]]+val[j] }
2. 该集合内最多选1件工作时. 只能从上一层的结果dp[i-1]来更新dp[i]了.(想想为什么)
初始化:dp[i]==dp[i-1].
状态转移方程为dp[i][k]=max{dp[i][k],dp[i-1][k-cost[j]]+val[k]}.
3. 该集合内工作可以随便选. 这就是1个普通的01背包问题了.
初始化:dp[i]==dp[i-1].
状态转移方程为:
dp[i][k]=max{dp[i][k],dp[i-1][k-cost[j]]+val[k],dp[i][k-cost[j]]+val[j] }
最终所求:dp[n][t]的值.
注意,为了防止越界,所以dp数组从1开始
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define INF 1e8
int dp[110][110];
int w[110];
int v[110];
int main()
{
int n,V;
while(~scanf("%d%d",&n,&V)){
int m,t,cnt;
memset(dp,0,sizeof(dp));
for(int i = 1; i <= n ;i++){
scanf("%d%d",&m,&t);
for(int j = 0; j < m; j++){
scanf("%d%d",&w[j],&v[j]);
if(t==0){
if(j==0){
for(int k = 0; k <= V; k++) dp[i][k] = -INF;
}
for(int k = V; k >= w[j]; k--){
//dp[i][k] = max(dp[i][k],max(dp[i-1][k-w[j]]+v[j],dp[i][k-w[j]]+v[j]));
//下面两个方程不能换,因为有可能 w = 0的时候换了有可能会被加两次。
dp[i][k] = max(dp[i][k],dp[i][k-w[j]]+v[j]);
dp[i][k] = max(dp[i][k],dp[i-1][k-w[j]]+v[j]);
}
}
else if(t==2){
if(j==0){
for(int k = 0; k <= V; k++) dp[i][k] = dp[i-1][k];
}
for(int k = V; k >= w[j]; k--){
dp[i][k] = max(dp[i][k],dp[i][k-w[j]]+v[j]);
}
}
else{
if(j==0){
for(int k = 0; k <= V; k++) dp[i][k] = dp[i-1][k];
}
for(int k = V; k >= w[j]; k--){
dp[i][k] = max(dp[i][k],dp[i-1][k-w[j]]+v[j]);
}
}
cnt++;
}
}
printf("%d\n",max(dp[n][V],-1));
}
return 0;
}
hdu_3535 (AreYouBusy)的更多相关文章
- hdu3535(AreYouBusy)
题目链接:传送门 题目大意:有 n 组任务,m 个体力,每组任务有 k 个,分类为 f,每个任务花费 x 体力,得到 y 开心值,求最大开心值,若不能完成输出-1 分类为 0:这一组中的 k 个任务至 ...
- Angular2入门系列教程7-HTTP(一)-使用Angular2自带的http进行网络请求
上一篇:Angular2入门系列教程6-路由(二)-使用多层级路由并在在路由中传递复杂参数 感觉这篇不是很好写,因为涉及到网络请求,如果采用真实的网络请求,这个例子大家拿到手估计还要自己写一个web ...
- Angular2学习笔记(1)
Angular2学习笔记(1) 1. 写在前面 之前基于Electron写过一个Markdown编辑器.就其功能而言,主要功能已经实现,一些小的不影响使用的功能由于时间关系还没有完成:但就代码而言,之 ...
- ASP.NET Core 之 Identity 入门(一)
前言 在 ASP.NET Core 中,仍然沿用了 ASP.NET里面的 Identity 组件库,负责对用户的身份进行认证,总体来说的话,没有MVC 5 里面那么复杂,因为在MVC 5里面引入了OW ...
- ABP入门系列(1)——学习Abp框架之实操演练
作为.Net工地搬砖长工一名,一直致力于挖坑(Bug)填坑(Debug),但技术却不见长进.也曾热情于新技术的学习,憧憬过成为技术大拿.从前端到后端,从bootstrap到javascript,从py ...
- Online Judge(OJ)搭建(第一版)
搭建 OJ 需要的知识(重要性排序): Java SE(Basic Knowledge, String, FileWriter, JavaCompiler, URLClassLoader, Secur ...
- 如何一步一步用DDD设计一个电商网站(九)—— 小心陷入值对象持久化的坑
阅读目录 前言 场景1的思考 场景2的思考 避坑方式 实践 结语 一.前言 在上一篇中(如何一步一步用DDD设计一个电商网站(八)—— 会员价的集成),有一行注释的代码: public interfa ...
- 如何一步一步用DDD设计一个电商网站(八)—— 会员价的集成
阅读目录 前言 建模 实现 结语 一.前言 前面几篇已经实现了一个基本的购买+售价计算的过程,这次再让售价丰满一些,增加一个会员价的概念.会员价在现在的主流电商中,是一个不大常见的模式,其带来的问题是 ...
- 【.net 深呼吸】细说CodeDom(5):类型成员
前文中,老周已经厚着脸皮介绍了类型的声明,类型里面包含的自然就是类型成员了,故,顺着这个思路,今天咱们就了解一下如何向类型添加成员. 咱们都知道,常见的类型成员,比如字段.属性.方法.事件.表示代码成 ...
随机推荐
- 编程竞赛--关于"数"的概念
质数:质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数. 合数:合数是指自然数中除了能被1和本身整除外,还能被其他数(0除外)整数的数.与之相对的是质数,而1既不属于质数也不属于合 ...
- mysql5.6 多实例标准化安装
1.检查防火墙 是否关闭service iptables stopchkconfig iptables offservice iptables status 2. SELINUXvim /etc/se ...
- Codeforces 1209D Cow and Snacks
题目大意 有 $n$ 个不同的糖果,从 $1$ 到 $n$ 编号.有 $k$ 个客人.要用糖果招待客人. 对于每个客人,这些糖果中恰有两个是其最爱.第 $i$ 个客人最爱的糖果编号是 $x_i$ 和 ...
- codeforces 842C Ilya And The Tree (01背包+dfs)
(点击此处查看原题) 题目分析 题意:在一个树中,有n个结点,记为 1~n ,其中根结点编号为1,每个结点都有一个值val[i],问从根结点到各个结点的路径中所有结点的值的gcd(最大公约数)最大是多 ...
- 解决WordPress百度分享图标不显示问题
最近在帮朋友维护博客时,发现他的百度分享居然不能使用了,首先很多人会认为,百度分享挂在那里就是一种摆设,又没有几个人去分享,有什么含义呢?其实挂百度分享的含义是非常重要的,网站增加一个百度分享是可以增 ...
- Codeforces 1196C. Robot Breakout
传送门 维护合法区域的四个边 $xa,ya,xb,yb$ 表示在以 $(xa,ya)$ 为左下角,以 $(xb,yb)$ 为右上角的矩形内的点都是合法答案 对于一个起点 $(x,y)$,如果没法往左, ...
- sed---流文本操作
一:sed基本命令 sed的使用格式 sed [optiona] 'command' files sed 参数[-nefir] 动作[n1,[n2]] function sed -n:只有经过sed特 ...
- 10.1、LNMT架构
Java环境安装包下载路径: https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.htm ...
- 你在和脚本谈恋爱(自动化在IM聊天中的应用)
谢谢打开这篇文章的每个你 测开之分层自动化(Python)招生简章 Python自动化测试报告美化 在python中进行数据驱动测试 太嚣张了!他竟用Python绕过了“验证码” 在网络世界里你不知道 ...
- 浙大数据结构课后习题 练习二 7-2 Reversing Linked List (25 分)
Given a constant K and a singly linked list L, you are supposed to reverse the links of every K elem ...