Count on a tree(树上路径第K小)
题目链接:https://www.spoj.com/problems/COT/en/
题意:求树上A,B两点路径上第K小的数
思路:主席树实际上是维护的一个前缀和,而前缀和不一定要出现在一个线性表上。
比如说我们从一棵树的根节点进行DFS,得到根节点到各节点的距离dist[x]——这是一个根-x路径上点与根节点距离的前缀和。
利用这个前缀和,我们可以解决一些树上任意路径的问题,比如在线询问[a,b]点对的距离——答案自然是dist[a]+dist[b]-2*dist[lca(a,b)]。
DFS遍历整棵树,然后在每个节点上建立一棵线段树,某一棵线段树的“前一版本”是位于该节点父亲节点fa的线段树。
利用与之前类似的方法插入点权(排序离散)。那么对于询问[a,b],答案就是root[a]+root[b]-root[lca(a,b)]-root[fa[lca(a,b)]]上的第k大。
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
#include<map>
#include<vector>
#include<string>
#include<set>
#define ll long long
#define maxn 100007
using namespace std;
const int MAXN=1e5+;
const int POW=;
int num[MAXN],node[MAXN];
struct point
{
int l;
int r;
int sum;
}T[MAXN*];
int root[MAXN];
vector<int> G[MAXN];
int d[MAXN];
int p[MAXN][POW];
int tot;
int f[MAXN];
int n,m;
void build(int l,int r,int& rt)
{
rt=++tot;
T[rt].sum=;
if(l>=r)return;
int m=(l+r)>>;
build(l,m,T[rt].l);
build(m+,r,T[rt].r);
}
void update(int last,int p,int l,int r,int &rt)
{
rt=++tot;
T[rt].l=T[last].l;
T[rt].r=T[last].r;
T[rt].sum=T[last].sum+;
if(l>=r)return ;
int m=(l+r)>>;
if(p<=m)update(T[last].l,p,l,m,T[rt].l);
else update(T[last].r,p,m+,r,T[rt].r);
}
int query(int left_rt,int right_rt,int lca_rt,int lca_frt,int l,int r,int k)
{
if(l>=r)return l;
int m=(l+r)>>;
int cnt=T[T[right_rt].l].sum+T[T[left_rt].l].sum-T[T[lca_rt].l].sum-T[T[lca_frt].l].sum;
if(k<=cnt)
return query(T[left_rt].l,T[right_rt].l,T[lca_rt].l,T[lca_frt].l,l,m,k);
else
return query(T[left_rt].r,T[right_rt].r,T[lca_rt].r,T[lca_frt].r,m+,r,k-cnt);
}
void dfs(int u,int fa,int cnt)
{
f[u]=fa;
d[u]=d[fa]+;
p[u][]=fa;
for(int i=;i<POW;i++)
p[u][i]=p[p[u][i-]][i-];
update(root[fa],num[u],,cnt,root[u]);
for(int i=;i<(int)G[u].size();i++)
{
int v=G[u][i];
if(v==fa)continue;
dfs(v,u,cnt);
}
}
int lca(int a,int b)
{
if(d[a]>d[b])
a^=b,b^=a,a^=b;
if(d[a]<d[b])
{
int del=d[b]-d[a];
for(int i=;i<POW;i++)
if(del&(<<i))b=p[b][i];
}
if(a!=b)
{
for(int i=POW-;i>=;i--)
{
if(p[a][i]!=p[b][i])
{
a=p[a][i],b=p[b][i];
}
}
a=p[a][],b=p[b][];
}
return a;
}
void init()
{
for(int i=;i<=n;i++)
{
G[i].clear();
}
memset(d,,sizeof(d));
memset(p,,sizeof(p));
memset(f,,sizeof(f));
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=;i<=n;i++)
{
scanf("%d",&num[i]);
node[i]=num[i];
}
tot=;
sort(node+,node++n);
int cnt=unique(node+,node+n+)-node-;
for(int i=;i<=n;i++)
{
num[i]=lower_bound(node+,node+cnt+,num[i])-node;
}
int a,b,c;
for(int i=;i<=n-;i++)
{
scanf("%d%d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
build(,cnt,root[]);
dfs(,,cnt );
while(m--)
{
scanf("%d%d%d",&a,&b,&c);
int t=lca(a,b);
int id=query(root[a],root[b],root[t],root[f[t]],,cnt,c);
printf("%d\n",node[id]);
}
}
return ;
}
Count on a tree(树上路径第K小)的更多相关文章
- Count on a tree 树上区间第K小
Count on a tree 题意:求路径 u到v上的 第k小的权重. 题解:先DFS建数, 然后对于每个节点往上跑出一颗主席树, 然后每次更新. 查询的时候, u, v, k, 找到 z = l ...
- SPOJ-COT-Count on a tree(树上路径第K小,可持久化线段树)
题意: 求树上A,B两点路径上第K小的数 分析: 同样是可持久化线段树,只是这一次我们用它来维护树上的信息. 我们之前已经知道,可持久化线段树实际上是维护的一个前缀和,而前缀和不一定要出现在一个线性表 ...
- Count on a tree 树上主席树
Count on a tree 树上主席树 给\(n\)个树,每个点有点权,每次询问\(u,v\)路径上第\(k\)小点权,强制在线 求解区间静态第\(k\)小即用主席树. 树上主席树类似于区间上主席 ...
- POJ 1741 Tree 求树上路径小于k的点对个数)
POJ 174 ...
- E - Count on a tree 树上第K小
主席树的入门题目,这道题的题意其实就是说,给你一棵树,询问在两个节点之间的路径上的区间第K小 我们如何把树上问题转换为区间问题呢? 其实DFS就可以,我们按照DFS的顺序,对线段树进行建树,那么这个树 ...
- spoj COT - Count on a tree (树上第K小 LCA+主席树)
链接: https://www.spoj.com/problems/COT/en/ 思路: 首先看到求两点之前的第k小很容易想到用主席树去写,但是主席树处理的是线性结构,而这道题要求的是树形结构,我们 ...
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
- BZOJ 2588: Spoj 10628. Count on a tree 树上跑主席树
2588: Spoj 10628. Count on a tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/J ...
- Codeforces 739B Alyona and a tree(树上路径倍增及差分)
题目链接 Alyona and a tree 比较考验我思维的一道好题. 首先,做一遍DFS预处理出$t[i][j]$和$d[i][j]$.$t[i][j]$表示从第$i$个节点到离他第$2^{j}$ ...
随机推荐
- maven 异常 提示 cannot be read or is not a valid ZIP file
Archive for required library: 'D:/repository/Maven/org/springframework/spring-aop/4.3.6.RELEASE/spri ...
- 《深入浅出WPF》学习总结之控件与布局
一.控件到底是什么 控件的本质是“数据+算法”——用户输入原始数据,算法处理原始数据并得到结果数据.问题就在于程序如何将结果数据展示给用户.同样一组数据,你可以使用LED阵列显示出来,或者是以命令行模 ...
- 配置NAT
NAT是将IP数据报文报头中的IP地址转换为另-一个IP地址的过程,主要用于实现内部网络(私有IP地址)访问外部网络(公有IP地址)的功能.NAT有3种类型:静态NAT.动态地址NAT以及网络地址端口 ...
- Git入门资料
1.廖雪峰老师Git教程 地址:https://www.liaoxuefeng.com/wiki/896043488029600 2.Eclipse eGit连接GitHub教程 地址:https:/ ...
- vps国外节点ubuntu修改时区重启不失效
使用了tzselect方法,但是重启后时区又恢复到初始情况了,不得行. 使用下面的方法成功了: 1.将时区修改成上海时区 cp /usr/share/zoneinfo/Asia/Shanghai /e ...
- 基于RSA的前后端登陆密码加密JAVA实现(转)
RSA加密算法简介 SA加密算法是一种非对称加密算法.在公开密钥加密和电子商业中RSA被广泛使用.对极大整数做因数分解的难度决定了RSA算法的可靠性.换言之,对一极大整数做因数分解愈困难,RSA算法愈 ...
- LINQ 推迟查询的执行
LINQ 在运行期间定义查询表达式时.查询就不会运行.查询会在迭代数据项是运行,例如: static void Main(string[] args) { List<string> lis ...
- MVCC/分布式事务简介
之前我们学习了RocksDB,但这还只是一个最基础的存储引擎.如果想把它在生产环境中用起来,还需要解决很多问题: 如何从单机扩展到分布式? 如何实现事务,并对事务进行并发控制? 用户接口能不能高级一点 ...
- k3 cloud付款单提示余额不足,科目余额表中余额为正,银行存款流水账中未负数
对比科目余额表中的科目明细账和银行存款流水账,发现科目余额表不全,这说明有部分凭证没做,付款的时候验证的主要以银行流水账为主(主要来自现金流量表),这时候需要调整出纳部分和总账部分
- 02python程序设计基础——字符串
字符串方法 format 1.替换字段名 在最简单的情况下,只需向 format 提供要设置其格式的未命名参数,并在格式字符串中使用未命名字段.此时,将按顺序将字段和参数配对.你还可给参数指定名称,这 ...