Crash的数字表格(莫比乌斯反演)
Crash的数字表格
Description
今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张NM的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4 5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。
Input
输入的第一行包含两个正整数,分别表示 \(N\) 和 \(M\)。
Output
输出一个正整数,表示表格中所有数的和\(mod \ 20101009\)的值。
Sample Input
\(4 \ 5\)
Sample Output
\(122\)
【数据规模和约定】
100%的数据满足\(N, M ≤ 10^7\)。
由题可得:我们应该求的是 \(\sum_{i =1} ^ n\ \sum_{j=1}^m\ lcm(i,j)\) (不妨设 \(n<=m\))
先可以由原式化简:
\(ans = \sum_{i=1}^n\ \sum_{j=1}^n\ \frac{ij}{gcd(i,j)}\)
\(ans = \sum_{d=1}^n\ \sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\ \sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\ [gcd(i,j)=1]\ ijd\)
经过最开始的基本化简以后,既然这道题和 \(gcd\) 有许许多多不可描述的关系,我们可以考虑莫比乌斯反演。
既然要用莫比乌斯反演,我们就应该来构造相应的 \(f(x)\) 和 \(F(x)\)
我们设 \(f(x, y, k)\) 表示 \(\sum_{i=1}^x\ \sum_{j=1}^y\ [gcd[i,j]=k]\ ij\)
再设 \(F(x,y,t)\) 表示 \(\sum_{i=1}^x\ \sum_{j=1}^y\ [t\mid gcd(i,j)]ij\)
\(\therefore \ ans=\sum_{d=1}^n\ d\ f(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor,1)\)
现在,我们来仔细观察一下 \(F(x,y,t)\) 和 \(f(x,y,k)\) 两个函数的关系
\(F(x,y,t)=\sum_{t\mid d}\ f(x,y,d)\)
由莫比乌斯反演后可得:
\(f(x,y,d)=\sum_{d\mid t}\ \mu(\frac{t}{d})\ F(x,y,t)\)
\(\because\ d=1\)
\(\therefore\ f(x,y,1)=\sum_{t=1}^x\ \mu(t)\ F(x,y,t)\)
现在,我们回过头了思考一下我们上面一系列操作的意义:
我们由题目要求推得我们需要求 \(f(x,y,1)\)
但是我们发现直接求并不好求,所以我们反演以后转化为去求 \(F(x,y,t)\) 再进一步求得 \(ans\)
既然我们转化为 \(F(x,y,t)\) ,那么这个函数应该要比较方面我们求值才可以达到我们的要求
所以我们来考虑一下 \(F(x,y,t)\) 这个函数
仔细思考后可以发现:
\(F(x,y,t)=\sum_{d=1}^x\ d^2\ (\sum_{a=1}^{\lfloor\frac{x}{d}\rfloor}\ a\ \sum_{b=1}^{\lfloor\frac{y}{d}\rfloor}\ b)\)
设 \(sum(x,y)=\sum_{a=1}^x\ \sum_{b=1}^y\ ab\)
显然可以用高斯求和 \(O(1)\) 求得
\(\therefore \ F(x,y,t)=\sum_{d=1}^x\ d^2\ sum(\lfloor\frac{x}{d}\rfloor,\lfloor\frac{y}{d}\rfloor)\)
那么整个分析过程就差不多完成了,综上所述:
\(ans=\sum_{d=1}^n\ d\ f(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor,1)\)
我们可以分块处理 \(f\) ,此处可以分块 复杂度\(O(\sqrt{n})\)
\(f(x,y,1)=\sum_{t=1}^x\ \mu(t)\ F(x,y,t)=\sum_{t=1}^x\ \mu(t)\ t^2\ sum(\lfloor\frac{x}{t}\rfloor,\lfloor\frac{y}{t}\rfloor)\)
我们可以 \(O(1)\) 预处理 \(\mu(t)\ t^2\),计算 \(sum\)
所以总复杂度 \(O(n\sqrt{n})\)
Crash的数字表格(莫比乌斯反演)的更多相关文章
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- 【BZOJ】2154: Crash的数字表格 莫比乌斯反演
[题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
- [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块
考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...
- bzoj2154: Crash的数字表格 莫比乌斯反演
题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...
- 洛谷 - P1829 - Crash的数字表格 - 莫比乌斯反演
求: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 显然: \(S(n,m)=\sum\limits_{i=1}^{n}\ ...
- 【BZOJ4816】【SDOI2017】数字表格 [莫比乌斯反演]
数字表格 Time Limit: 50 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Doris刚刚学习了fibonac ...
随机推荐
- more 分页显示文件内容
1.命令功能 more 分页显示文件内容 2.语法格式 more option file 参数说明 参数 参数说明 -num 指定屏幕显示大小为num行 +num 从行号num号开始显示 -s 把连 ...
- 美国的科技公司是如何使用加密的DNS
加密设备和“以隐私为中心”的提供商之间的DNS流量可以阻止某人窥探您的浏览器所指向的位置,或者使用DNS攻击将其发送到其他地方. 该网络中立性的死亡和法规对互联网服务供应商如何处理客户的网络流量的松动 ...
- 02.list--约瑟夫环
from fib import fib # 参考01.线性表 def josephus_a(n, k, m): """ 约瑟夫环 没有人用0表示,n个人出列即结束 :pa ...
- wine安装与配置
1. 安装wine32dpkg --add-architecture i386 && apt-get update && apt-get install wine3 ...
- 【leetcode】1043. Partition Array for Maximum Sum
题目如下: Given an integer array A, you partition the array into (contiguous) subarrays of length at mos ...
- 对vueloader的研究
vue-loader是webpack的加载器,允许您以称为单文件组件(SFC)的格式创作Vue组件: <template> <div class="example" ...
- Oracle12c修改时区
Oacle12c支持可插入数据库(PDB)在一个统一的数据库(CDB)中具有不同的字符集.时区文件版本和数据库时区. 出于性能原因,Oracle建议将数据库时区设置为UTC(0:00),因为不需要转换 ...
- 06 IntelliJ IDEA构建多模块项目
- Cenos7下nginx+mysql+php环境的搭建
首先更新系统软件 1 $ yum update 第一步:安装nginx 1.安装nginx源 1 $ yum localinstall http://nginx.org/packages/centos ...
- [hadoop](1) MapReduce:ChainMapper
前言 本章主要讲述的是对于hadoop生态系统中,MapReduce写的ChainMapper的学习.MapReduce是hadoop集群数据处理的默认框架.而对于数据集中所有的数据必然有一些不友好的 ...