传送门

这是一道LCT的板子题,说白了就是在LCT上支持线段树2的操作。

所以我只是来存一个板子,并不会讲什么(再说我也不会,只能误人子弟2333)。

不过代码里的注释可以参考一下。

Code

#include<bits/stdc++.h>
using namespace std;
typedef unsigned int uint;
const int N=1e5+;
const uint mod=;
inline int read(){
int x=,w=;char ch=;
while(!isdigit(ch)) w|=ch=='-',ch=getchar();
while(isdigit(ch)) x=(x<<)+(x<<)+(ch^),ch=getchar();
return w?-x:x;
}
int f[N],sz[N],c[N][];
uint v[N],s[N],ml[N],ad[N];//int是会爆的
bool rv[N];
#define lc c[x][0]
#define rc c[x][1]
#define mul(x) x*=val,x%=mod
#define add(x) x+=val,x%=mod
//我习惯的写法是判断 not root
inline bool nrt(int x){return c[f[x]][]==x||c[f[x]][]==x;};
void pushup(int x){
s[x]=(s[lc]+s[rc]+v[x])%mod;
sz[x]=sz[lc]+sz[rc]+;
}
//自定义的优先级:乘法>加法>翻转
void Rev(int x){lc^=rc^=lc^=rc;rv[x]^=;};
void Mul(int x,uint val){mul(v[x]),mul(s[x]),mul(ml[x]),mul(ad[x]);}
void Add(int x,uint val){add(v[x]);add(ad[x]);val*=sz[x];val%=mod;add(s[x]);}
void pushdown(int x){
if(ml[x]^) Mul(lc,ml[x]),Mul(rc,ml[x]),ml[x]=;
if(ad[x]) Add(lc,ad[x]),Add(rc,ad[x]),ad[x]=;
if(rv[x]) Rev(lc),Rev(rc),rv[x]=;
}
//以下跟普通的LCT没两样
int get(int x){return x==c[f[x]][];}
void link(int x,int y,int d){c[x][d]=y;f[y]=x;}
void rotate(int x){
int y=f[x],z=f[y],d=get(x);
if(nrt(y)) c[z][get(y)]=x;f[x]=z;
//如果y=rt,说明y->z是一条虚边,也就是说x和z分属两棵不同的Splay,如果这样还连边z->x的话,后果emmm……
//但x->z必须连,因为就算y是根,把x旋上去后x就成根了,而LCT中一棵Spaly的根的父边一定是一条虚边(原树的根所属的Splay除外),相当于x继承了y连虚边的使命。。。
link(y,c[x][d^],d);
link(x,y,d^);
pushup(y),pushup(x);
}
int st[N],tp;
void splay(int x){
int t=x;
//手动用栈来pushdown
st[tp=]=t;
while(nrt(t)) st[++tp]=t=f[t];
while(tp) pushdown(st[tp--]);
for(;nrt(x);rotate(x)){
int y=f[x];
if(nrt(y)) get(x)^get(y)?rotate(x):rotate(y);
}
}
void access(int x){
for(int y=;x;x=f[y=x])
splay(x),c[x][]=y,pushup(x);
}
void makert(int x){
access(x),splay(x),Rev(x);
}
int findrt(int x){
access(x),splay(x);
while(lc) pushdown(x),x=lc;
splay(x);return x;
}
void split(int x,int y){
makert(x),access(y),splay(y);
}
void link(int x,int y){
makert(x);if(findrt(y)^x) f[x]=y;
}
void cut(int x,int y){
makert(x);
//在这道题中由于保证了cut操作合法因此应该可以不加判断
if(findrt(y)==x&&f[y]==x&&!c[y][]) f[y]=c[x][]=,pushup(x);
}
int n,m;
int main(){
n=read(),m=read();
for(int i=;i<=n;++i) v[i]=ml[i]=sz[i]=;
for(int i=;i<n;++i) link(read(),read());
char op[];int x,y;
while(m--){
scanf("%s",op);
x=read(),y=read();
switch(op[]){
case '+':split(x,y);Add(y,read());break;
case '-':cut(x,y);link(read(),read());break;
case '*':split(x,y);Mul(y,read());break;
case '/':split(x,y);cout<<s[y]<<endl;break;
}
}
return ;
}

LCT模板

[洛谷P1501] [国家集训队]Tree II(LCT模板)的更多相关文章

  1. 洛谷P1501 [国家集训队]Tree II(LCT)

    题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原有的 ...

  2. 洛谷 P1501 [国家集训队]Tree II 解题报告

    P1501 [国家集训队]Tree II 题目描述 一棵\(n\)个点的树,每个点的初始权值为\(1\).对于这棵树有\(q\)个操作,每个操作为以下四种操作之一: + u v c:将\(u\)到\( ...

  3. 洛谷P1501 [国家集训队]Tree II(LCT,Splay)

    洛谷题目传送门 关于LCT的其它问题可以参考一下我的LCT总结 一道LCT很好的练习放懒标记技巧的题目. 一开始看到又做加法又做乘法的时候我是有点mengbi的. 然后我想起了模板线段树2...... ...

  4. 洛谷P1501 [国家集训队]Tree II(打标记lct)

    题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原有的 ...

  5. 洛谷.1501.[国家集训队]Tree II(LCT)

    题目链接 日常zz被define里没取模坑 //标记下放同线段树 注意51061^2 > 2147483647,要开unsigned int //*sz[]别忘了.. #include < ...

  6. 【刷题】洛谷 P1501 [国家集训队]Tree II

    题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原有的 ...

  7. [洛谷P1501][国家集训队]Tree II

    题目大意:给一棵树,有四种操作: $+\;u\;v\;c:$将路径$u->v$区间加$c$ $-\;u_1\;v_1\;u_2\;v_2:$将边$u_1-v_1$切断,改成边$u_2-v_2$, ...

  8. 洛谷 P1501 [国家集训队]Tree II

    看来这个LCT板子并没有什么问题 #include<cstdio> #include<algorithm> using namespace std; typedef long ...

  9. 洛谷 P1501 [国家集训队]Tree II Link-Cut-Tree

    Code: #include <cstdio> #include <algorithm> #include <cstring> #include <strin ...

随机推荐

  1. Django之ORM操作.md

    1.ORM简介 MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人 ...

  2. python网络爬虫(12)去哪网酒店信息爬取

    目的意义 爬取某地的酒店价格信息,示例使用selenium在Firefox中的使用. 来源 少部分来源于书.python爬虫开发与项目实战 构造 本次使用简易的方案,模拟浏览器访问,然后输入字段,查找 ...

  3. 记一次完整的java项目压力测试

    总结:通过这次压力测试,增加了对程序的理解:假定正常情况下方法执行时间为2秒,吞吐量为100/s,则并发为200/s:假设用户可接受范围为10s,那么并发量可以继续增加到1000/s,到这个时候一切还 ...

  4. C++ 数组操作符重载、函数对象分析、赋值操作符

    string类型访问单个字符 #include <iostream> #include <string> #include <sstream> using name ...

  5. StandardWrapper

    Tomcat中有四种类型的Servlet容器,分别是 Engine.Host.Context.Wrapper,每个Wrapper实例表示一个具体的Servlet定义,StandardWrapper就是 ...

  6. Git复习(一)之简介、安装、集中式和分布式

    简介 Git是分布式版本控制系统,使用C语言开发的,CVS.SVN是集中式的版本控制系统,集中式的版本控制系统不但速度慢,而且必须联网才能使用. Git是分布式版本控制系统,同一个Git仓库,可以 分 ...

  7. 移动端H5开发自适应技巧

    移动端H5开发,必要要做到自适应各种分辨率的手机,下面由我为大家大致说一下,需要3步走 第一:head标签中添加: <meta name="viewport" content ...

  8. java-第三方包没有打进war包里面

    java-web的项目中引用第三方的jar包,在打成war包部署测试,出现报错,提示找不到引用的jar 解决方案: 1.在eclipse的项目--右键属性---deployment assembly- ...

  9. Nginx如何配置反向代理

    server { listen 80; server_name 代理域名; location / { proxy_pass 应用域名:应用端口; proxy_set_header Host $host ...

  10. 通用mapper将另外一个同名的表生成在同一个实体及mapper中

    今天遇见了一个在网上都搜索不到的错误,使用通过mapper生成实体及mapper文件时会将另外一个数据库的同名文件生成在一个实体及mapper中,这样就会造成一个实体和mapper中有两个表的字段,经 ...