1211: [HNOI2004]树的计数

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 3432  Solved: 1295
[Submit][Status][Discuss]

Description

一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵。给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数。

Input

第一行是一个正整数n,表示树有n个结点。第二行有n个数,第i个数表示di,即树的第i个结点的度数。其中1<=n<=150,输入数据保证满足条件的树不超过10^17个。

Output

输出满足条件的树有多少棵。

Sample Input

4
2 1 2 1

Sample Output

2
 
 
 

先丟几个Prufer序列的性质:

1.与无根树一一对应。

2.度数为$d_i$的点会在Prufer序列中出现$d_i-1$次。

3.一个$n$个节点的完全图的生成树个数为$n^{n-2}$

  解释一下:prufer序列长为$n-2$,每个位置有$n$种可能性。

4.对于给定每个点度数的无根树,共有$\frac{(n-2)!}{\prod \limits _{i=1}^n {(d_i-1)!}}$种情况。

  其实就是$d_i-1$个$i$的可重全排列。

那么这道题就用上面这个结论切掉就好了。求组合数直接分解质因数,记得要特判$n==1$及不联通的情况。

#include<cstdio>
#include<iostream>
#include<cstring>
const int N=;
int d[N],n;
int vis[N],pri[N],res[N],tot,sum,ans[N*],bu[N];
void getprime()
{
for(int i=;i<=n;i++)
{
if(!vis[i])pri[++tot]=i,res[i]=tot;
for(int j=;j<=tot;j++)
{
if(pri[j]*i>n)break;
vis[i*pri[j]]=;res[i*pri[j]]=j;
if(i%pri[j]==)break;
}
}
}
void divi(int x,int val)
{
while(x!=)bu[res[x]]+=val,x/=pri[res[x]];
}
void mult(int a[],int x)
{
int k=;
for(int i=;i<=a[];i++)
{
int tmp=a[i]*x+k;
a[i]=tmp%;
k=tmp/;
}
while(k)a[++a[]]=k%,k/=;
}
int main()
{
scanf("%d",&n);
if(n==)
{
int deg;
scanf("%d",&deg);
if(!deg)puts("");
else puts("");
return ;
}
getprime();
for(int i=;i<=n;i++)
{
scanf("%d",&d[i]);
if(!d[i])
{
puts("");
return ;
}
sum+=d[i]-;
}
if(sum!=n-)
{
puts("");
return ;
}
for(int i=n-;i>=;i--)
divi(i,);
for(int i=;i<=n;i++)
{
for(int j=d[i]-;j>=;j--)
divi(j,-);
}
ans[]=ans[]=;
for(int i=;i<=tot;i++)
while(bu[i]--)mult(ans,pri[i]);
for(int i=ans[];i;i--)
printf("%d",ans[i]);
return ;
}

1005: [HNOI2008]明明的烦恼

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 7125  Solved: 2818
[Submit][Status][Discuss]

Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3
1
-1
-1

Sample Output

2

HINT

  两棵树分别为1-2-3;1-3-2

本题的问题在于有的点度数是不确定的。

所以我们先求出$sum=\sum d_i-1$,之后从总长度$n-2$中选出这些

对于剩下的不确定度数的部分,我们设已知度数点的个数为$cnt$

那么现在有$n-2-sum$个位置可以任意排列$n-cnt$个点

易得最终答案为

$C_{n-2}^{sum}*\frac{(n-2)!}{\prod \limits _{i=1}^{cnt} {(d_i-1)!}}*(n-cnt)^{n-2-sum}$

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=;
int d[N],n;
int vis[N],pri[N],res[N],tot,sum,cnt,ans[N*],bu[N];
void getprime()
{
for(int i=;i<=n;i++)
{
if(!vis[i])pri[++tot]=i,res[i]=tot;
for(int j=;j<=tot;j++)
{
if(pri[j]*i>n)break;
vis[i*pri[j]]=;res[i*pri[j]]=j;
if(i%pri[j]==)break;
}
}
}
void divi(int x,int val)
{
while(x!=)bu[res[x]]+=val,x/=pri[res[x]];
}
void mult(int a[],int x)
{
int k=;
for(int i=;i<=a[];i++)
{
int tmp=a[i]*x+k;
a[i]=tmp%;
k=tmp/;
}
while(k)a[++a[]]=k%,k/=;
} int main()
{
scanf("%d",&n);
getprime();
for(int i=;i<=n;i++)
{
scanf("%d",&d[i]);
if(d[i]!=-)sum+=d[i]-,cnt++;
}
for(int i=n-;i>=;i--)
divi(i,);
for(int i=n--sum;i>=;i--)
divi(i,-);
for(int i=;i<=n;i++)
{
if(d[i]!=-)
{
for(int j=d[i]-;j>=;j--)
divi(j,-);
}
}
ans[]=ans[]=;
for(int i=;i<=n--sum;i++)
mult(ans,n-cnt);
for(int i=;i<=tot;i++)
while(bu[i])mult(ans,pri[i]),bu[i]--;
for(int i=ans[];i>=;i--)
printf("%d",ans[i]);
return ;
}

bzoj1211树的计数 x bzoj1005明明的烦恼 题解(Prufer序列)的更多相关文章

  1. 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)

    [BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...

  2. [HNOI2008][bzoj 1005]明明的烦恼(prufer序列)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7121  Solved: 2816[Submit][Stat ...

  3. 2021.07.19 P2624 明明的烦恼(prufer序列,为什么杨辉三角我没搞出来?)

    2021.07.19 P2624 明明的烦恼(prufer序列,为什么杨辉三角我没搞出来?) [P2624 HNOI2008]明明的烦恼 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn ...

  4. HNOI2004 树的计数 和 HNOI2008 明明的烦恼

    树的计数 输入文件第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的树不超过10^17个. 明 ...

  5. [HNOI2008]明明的烦恼(prufer序列,高精度,质因数分解)

      prufer序列 定义 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2. 描述 eg 将 ...

  6. 【洛谷2624_BZOJ1005】[HNOI2008] 明明的烦恼(Prufer序列_高精度_组合数学)

    题目: 洛谷2624 分析: 本文中所有的 "树" 都是带标号的. 介绍一种把树变成一个序列的工具:Prufer 序列. 对于一棵 \(n\) 个结点的树,每次选出一个叶子(度数为 ...

  7. [BZOJ1005][HNOI2008]明明的烦恼 数学+prufer序列+高精度

    #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int N; ...

  8. [HNOI2004][bzoj1211] 树的计数(prufer序列)

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3432  Solved: 1295[Submit][Stat ...

  9. BZOJ1005明明的烦恼 Prufer + 分解質因數 + 高精度

    @[高精度, Prufer, 質因數分解] Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多 ...

随机推荐

  1. 科学把妹法 ( ̄▽ ̄)"

    曾经有一位生物学人士,公布了工科把妹第一弹,暨“巴甫洛夫把妹法”: 每天给你那位心仪的女同事/女同学的抽屉里都放上精心准备的早餐,并且保持缄默不语,无论她如何询问,都不要说话.  如此坚持一至两个月, ...

  2. 2019牛客多校第五场H - subsequence 2 拓扑

    H - subsequence 2 题意 要你使用前\(m\)个小写字母构造一个长度为\(n\)的字符串 有\(m*(m-1)/2\)个限制条件: \(c_{1} .c_{2}. len\):表示除去 ...

  3. String、StringBuuffer、StringBuilder三者的区别

    string String 字符串常量(final修饰,不可被继承,线程不安全),String是常量,当创建之后即不能更改,可以给多个引用共享,在做大量字符串拼接的时候效率低.(可以通过StringB ...

  4. CTO 技能图谱skill-map

    # CTO 技能图谱 ### 岗位职责* 建立技术团队文化* 规划技术发展路线* 落地产品研发成果* 宣传公司技术品牌* 吸引优秀技术人才 ### 基本素质* 正直诚实的道德修养* 谦虚谨慎的工作态度 ...

  5. 原生写一个一键获取所有DOM元素的方法

    一天挺一个朋友去面试要做一个获取dom元素到数组中 主要用到一个递归算法,通过节点的childNodes属性--代码如下: function getAllNode() { var nodes = do ...

  6. svn 版本管理,trunk(主干),branch(分支),merge(合并)

    svn 版本管理,主要对trunk(主干).branch(分支).merge(合并)进行说明. svn作为一个常用的版本管理工具,一些基本操作必须要会,在这里整理一下自己使用svn的一些体会: svn ...

  7. 81、Tensorflow实现LeNet-5模型,多层卷积层,识别mnist数据集

    ''' Created on 2017年4月22日 @author: weizhen ''' import os import tensorflow as tf import numpy as np ...

  8. The Preliminary Contest for ICPC Asia Shenyang 2019 H

    H. Texas hold'em Poker 思路:根据每个牌型分等级,然后排序按照等级优先,最大值次之,次大值,最后比较剩下值的和. #include<bits/stdc++.h> us ...

  9. JavaFX教程

    JavaFX是Java的下一代图形用户界面工具包.JavaFX是一组图形和媒体API,我们可以用它们来创建和部署富客户端应用程序. JavaFX允许开发人员快速构建丰富的跨平台应用程序.JavaFX通 ...

  10. 《Hadoop学习之路》学习实践

    (实践机器:blog-bench) 本文用作博文<Hadoop学习之路>实践过程中遇到的问题记录. 本文所学习的博文为博主“扎心了,老铁” 博文记录.参考链接https://www.cnb ...