题目链接:https://vjudge.net/problem/HDU-4507

题意:定义如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关——
  1、整数中某一位是7;

  2、整数的每一位加起来的和是7的整数倍;

  3、这个整数是7的整数倍;

  给定l,r,求[l,r] 区间与7无关的数的平方和。

思路:这3条定义都是常规的数位dp,但题目求的并不是与7无关的数的个数,而是平方和,这也是该题的难点。这里需要数位dp维护3个值:

  1. 与7无关的数的个数num;

  2. 与7无关的数的和sum;

  3. 与7无关的数的平方和sum;

  (用结构体组织上述3个属性,假设当前求的结点是ans,当前点取i,递归得到的结点为tmp)

  第1条很简单,就是常规的数位dp:

    ans.num+=tmp.num;
    ans.num%=Mod;

  第2条需要用到第一条,求当前的所有数的和,即后面位的所有和+当前值×后面的数的个数:

    ans.sum+=(tmp.sum+(i*key[pos])%Mod*tmp.num%Mod)%Mod;
    ans.sum%=Mod;

  第3条需要用到前2条,求当前所有数的平方和。先考虑一个数,设该数后面的位数的值为b,当前要加的值为a(a=i*key[pos]),则该数平方和为(a+b)^2=a^2+2*a*b+b^2,然后考虑对所有数的平方和,即上述式子求和tmp.num次,上述式子有3项。第一项:即a^2*tmp.num。第二项:即2*a*tmp.sum。第三项:即tmp.sqsum。

        ans.sqsum+=tmp.num*i%Mod*i%Mod*key[pos]%Mod*key[pos]%Mod;
ans.sqsum%=Mod;
ans.sqsum+=*i*key[pos]%Mod*tmp.sum%Mod;
ans.sqsum%=Mod;
ans.sqsum+=tmp.sqsum;
ans.sqsum%=Mod;

还有要注意的是这道题的数据,因为num,sum,sqsum还有key[i]都可能超过Mod,所以每乘一次就要%Mod,不然会出现乘法溢出。

AC代码:

#include <cstdio>
using namespace std;
typedef long long LL;
const LL Mod=; struct node{
LL num,sum,sqsum;
}dp[][][]; int T,a[];
LL key[]; node dfs(int pos,int pre1,int pre2,bool limit){
if(pos==-){
node tmp;
tmp.num=(pre1!=&&pre2!=);
tmp.sum=tmp.sqsum=;
return tmp;
}
if(!limit&&dp[pos][pre1][pre2].num!=-)
return dp[pos][pre1][pre2];
int up=limit?a[pos]:;
node ans;
ans.num=ans.sum=ans.sqsum=;
for(int i=;i<=up;++i){
if(i==) continue;
node tmp=dfs(pos-,(pre1+i)%,(pre2*+i)%,limit&&i==a[pos]); ans.num+=tmp.num;
ans.num%=Mod; ans.sum+=(tmp.sum+(i*key[pos])%Mod*tmp.num%Mod)%Mod;
ans.sum%=Mod; ans.sqsum+=tmp.num*i%Mod*i%Mod*key[pos]%Mod*key[pos]%Mod;
ans.sqsum%=Mod;
ans.sqsum+=*i*key[pos]%Mod*tmp.sum%Mod;
ans.sqsum%=Mod;
ans.sqsum+=tmp.sqsum;
ans.sqsum%=Mod;
}
if(!limit) dp[pos][pre1][pre2]=ans;
return ans;
} LL solve(LL x){
int pos=;
while(x){
a[pos++]=x%;
x/=;
}
return dfs(pos-,,,true).sqsum;
} int main()
{
key[]=;
for(int i=;i<=;++i)
key[i]=(key[i-]*)%Mod;
for(int i=;i<;++i)
for(int j=;j<;++j)
for(int k=;k<;++k)
dp[i][j][k].num=-;
scanf("%d",&T);
while(T--){
LL l,r,ans;
scanf("%lld%lld",&l,&r);
ans=solve(r)-solve(l-);
ans=(ans%Mod+Mod)%Mod;
printf("%lld\n",ans);
}
return ;
}

hdoj4507(数位dp)的更多相关文章

  1. 专题训练之数位DP

    推荐以下一篇博客:https://blog.csdn.net/wust_zzwh/article/details/52100392 1.(HDOJ2089)http://acm.hdu.edu.cn/ ...

  2. 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP

    [BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...

  3. bzoj1026数位dp

    基础的数位dp 但是ce了一发,(abs难道不是cmath里的吗?改成bits/stdc++.h就过了) #include <bits/stdc++.h> using namespace ...

  4. uva12063数位dp

    辣鸡军训毁我青春!!! 因为在军训,导致很长时间都只能看书yy题目,而不能溜到机房鏼题 于是在猫大的帮助下我发现这道习题是数位dp 然后想起之前讲dp的时候一直在补作业所以没怎么写,然后就试了试 果然 ...

  5. HDU2089 不要62[数位DP]

    不要62 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  6. 数位DP GYM 100827 E Hill Number

    题目链接 题意:判断小于n的数字中,数位从高到低成上升再下降的趋势的数字的个数 分析:简单的数位DP,保存前一位的数字,注意临界点的处理,都是套路. #include <bits/stdc++. ...

  7. 数位dp总结

    由简单到稍微难点. 从网上搜了10到数位dp的题目,有几道还是很难想到的,前几道基本都是模板题,供入门用. 点开即可看题解. hdu3555 Bomb hdu3652 B-number hdu2089 ...

  8. 数位DP入门

    HDU 2089 不要62 DESC: 问l, r范围内的没有4和相邻62的数有多少个. #include <stdio.h> #include <string.h> #inc ...

  9. 数位DP之奥义

    恩是的没错数位DP的奥义就是一个简练的dfs模板 int dfs(int position, int condition, bool boundary) { ) return (condition ? ...

随机推荐

  1. Centos7——docker入门(笔记)

    docker 入门(笔记) 一.Docker是什么? 官方原话: Docker provides a way to run applications securely isolated in a co ...

  2. java——解决"java.io.StreamCorruptedException: invalid stream header: xxx"

    这个错误是由序列化引起的,可能的原因以及解决方法: 1.kryo对于集合(比如 Map)的反序列化会失效,报这个错误,解决办法比较暴力,不用kryo了,直接用java原生方法. 2.使用Java原生方 ...

  3. wx小程序知识点(三)

    三.封装小程序的数据请求 (1)在根目录创建utils目录,创建config.js.base.js (2)在config.js中创建config类,并将请求路径配置给config的属性restUrl, ...

  4. 25. ClustrixDB 使用sierra_stats导出概率分布

    ClustrixDB提供了导出概率分布(PDs)的能力,这可以与模式(DDL)一起用于调查查询的性能.通常,这个过程是在Clustrix支持请求时执行的.下面的部分概述了如何使用python脚本sie ...

  5. List集合遍历的三种方法

    测试数据: List<String> list = new ArrayList<String>(); list.add("java"); list.add( ...

  6. JS实现深拷贝的几种方法

    引 如何区分深拷贝与浅拷贝,简单点来说,就是假设B复制了A,当修改A时,看B是否会发生变化,如果B也跟着变了,说明这是浅拷贝,拿人手短,如果B没变,那就是深拷贝,自食其力. 此篇文章中也会简单阐述到栈 ...

  7. 计蒜客 window画图

    在 Windows 的"画图"工具里,可以绘制各种各样的图案.可以把画图当做一个标准的二维平面,在其上先后绘制了 nn 条颜色互不相同的线段. 输出格式 输出 qq 行,每行一个整 ...

  8. NS3安装

    1.添加源sudo vim /etc/apt/sources.list deb http://archive.ubuntu.com/ubuntu/ trusty main universe restr ...

  9. AI换脸必备知识:如何查看显卡型号以及显存大小!

    使用Deepfakes(AI换脸) 软件,拼的就是配置,耗的就是时间,考验的是耐心. 配置好了,时间就少了. 所以玩这种软件,硬核需求就是:配置,配置,配置.  我的电脑能跑这个软件么?也是很多新手的 ...

  10. linux如何查看目录或文件夹的总大小--du命令

    记录一下如何查看一个目录或文件夹的总大小. 使用du命令的选项-s,可以统计整个目录或文件夹的大小. 例如 du -sk ./ 156k -k表示以KB为单位计算.