hdoj4507(数位dp)
题目链接:https://vjudge.net/problem/HDU-4507
题意:定义如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关——
1、整数中某一位是7;
2、整数的每一位加起来的和是7的整数倍;
3、这个整数是7的整数倍;
给定l,r,求[l,r] 区间与7无关的数的平方和。
思路:这3条定义都是常规的数位dp,但题目求的并不是与7无关的数的个数,而是平方和,这也是该题的难点。这里需要数位dp维护3个值:
1. 与7无关的数的个数num;
2. 与7无关的数的和sum;
3. 与7无关的数的平方和sum;
(用结构体组织上述3个属性,假设当前求的结点是ans,当前点取i,递归得到的结点为tmp)
第1条很简单,就是常规的数位dp:
ans.num+=tmp.num;
ans.num%=Mod;
第2条需要用到第一条,求当前的所有数的和,即后面位的所有和+当前值×后面的数的个数:
ans.sum+=(tmp.sum+(i*key[pos])%Mod*tmp.num%Mod)%Mod;
ans.sum%=Mod;
第3条需要用到前2条,求当前所有数的平方和。先考虑一个数,设该数后面的位数的值为b,当前要加的值为a(a=i*key[pos]),则该数平方和为(a+b)^2=a^2+2*a*b+b^2,然后考虑对所有数的平方和,即上述式子求和tmp.num次,上述式子有3项。第一项:即a^2*tmp.num。第二项:即2*a*tmp.sum。第三项:即tmp.sqsum。
ans.sqsum+=tmp.num*i%Mod*i%Mod*key[pos]%Mod*key[pos]%Mod;
ans.sqsum%=Mod;
ans.sqsum+=*i*key[pos]%Mod*tmp.sum%Mod;
ans.sqsum%=Mod;
ans.sqsum+=tmp.sqsum;
ans.sqsum%=Mod;
还有要注意的是这道题的数据,因为num,sum,sqsum还有key[i]都可能超过Mod,所以每乘一次就要%Mod,不然会出现乘法溢出。
AC代码:
#include <cstdio>
using namespace std;
typedef long long LL;
const LL Mod=; struct node{
LL num,sum,sqsum;
}dp[][][]; int T,a[];
LL key[]; node dfs(int pos,int pre1,int pre2,bool limit){
if(pos==-){
node tmp;
tmp.num=(pre1!=&&pre2!=);
tmp.sum=tmp.sqsum=;
return tmp;
}
if(!limit&&dp[pos][pre1][pre2].num!=-)
return dp[pos][pre1][pre2];
int up=limit?a[pos]:;
node ans;
ans.num=ans.sum=ans.sqsum=;
for(int i=;i<=up;++i){
if(i==) continue;
node tmp=dfs(pos-,(pre1+i)%,(pre2*+i)%,limit&&i==a[pos]); ans.num+=tmp.num;
ans.num%=Mod; ans.sum+=(tmp.sum+(i*key[pos])%Mod*tmp.num%Mod)%Mod;
ans.sum%=Mod; ans.sqsum+=tmp.num*i%Mod*i%Mod*key[pos]%Mod*key[pos]%Mod;
ans.sqsum%=Mod;
ans.sqsum+=*i*key[pos]%Mod*tmp.sum%Mod;
ans.sqsum%=Mod;
ans.sqsum+=tmp.sqsum;
ans.sqsum%=Mod;
}
if(!limit) dp[pos][pre1][pre2]=ans;
return ans;
} LL solve(LL x){
int pos=;
while(x){
a[pos++]=x%;
x/=;
}
return dfs(pos-,,,true).sqsum;
} int main()
{
key[]=;
for(int i=;i<=;++i)
key[i]=(key[i-]*)%Mod;
for(int i=;i<;++i)
for(int j=;j<;++j)
for(int k=;k<;++k)
dp[i][j][k].num=-;
scanf("%d",&T);
while(T--){
LL l,r,ans;
scanf("%lld%lld",&l,&r);
ans=solve(r)-solve(l-);
ans=(ans%Mod+Mod)%Mod;
printf("%lld\n",ans);
}
return ;
}
hdoj4507(数位dp)的更多相关文章
- 专题训练之数位DP
推荐以下一篇博客:https://blog.csdn.net/wust_zzwh/article/details/52100392 1.(HDOJ2089)http://acm.hdu.edu.cn/ ...
- 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP
[BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...
- bzoj1026数位dp
基础的数位dp 但是ce了一发,(abs难道不是cmath里的吗?改成bits/stdc++.h就过了) #include <bits/stdc++.h> using namespace ...
- uva12063数位dp
辣鸡军训毁我青春!!! 因为在军训,导致很长时间都只能看书yy题目,而不能溜到机房鏼题 于是在猫大的帮助下我发现这道习题是数位dp 然后想起之前讲dp的时候一直在补作业所以没怎么写,然后就试了试 果然 ...
- HDU2089 不要62[数位DP]
不要62 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- 数位DP GYM 100827 E Hill Number
题目链接 题意:判断小于n的数字中,数位从高到低成上升再下降的趋势的数字的个数 分析:简单的数位DP,保存前一位的数字,注意临界点的处理,都是套路. #include <bits/stdc++. ...
- 数位dp总结
由简单到稍微难点. 从网上搜了10到数位dp的题目,有几道还是很难想到的,前几道基本都是模板题,供入门用. 点开即可看题解. hdu3555 Bomb hdu3652 B-number hdu2089 ...
- 数位DP入门
HDU 2089 不要62 DESC: 问l, r范围内的没有4和相邻62的数有多少个. #include <stdio.h> #include <string.h> #inc ...
- 数位DP之奥义
恩是的没错数位DP的奥义就是一个简练的dfs模板 int dfs(int position, int condition, bool boundary) { ) return (condition ? ...
随机推荐
- echarts 添加自定义label标签
1.echarts 自定义标签 注:当设置visualMap的后,给覆盖regions单独定义的值(如果data 中没有regions的地区 则无妨,我这个是从data中删除'青岛',但是lable ...
- [人物存档]【AI少女】【捏脸数据】写实系列
点击下载:AISChaF_20191023202713797.zip 点击下载:AISChaF_20191023202713797.zip
- layer 相关网址
layer 1.8.5 官方网址: http://layer.layui.com/1.8.5/ API网址: http://layer.layui.com/1.8.5/api.html
- HGOI20190811 省常中互测4
Problem A magic 给出一个字符串$S$,和数字$n$,要求构造长度为$n$只含有小写字母的字符串$T$, 使得在$T$中存在删除且仅删除一个子串使得$S=T$成立. 输出$T$的构造方案 ...
- 1209F - Koala and Notebook
这场比赛没打,看同学fst了,于是来看看. 这道题看似简单,但是没想清楚细节真的不太行.像现在熬到十一点左右,脑子真的不行. 首先显然位数越小越好,因为每一位要比较,不如拆点.此时要拆成两条有向链(开 ...
- 工具类--BeanUtils----Bean转换工具
package com.zhouyy.netBank.util; import java.beans.PropertyDescriptor; import java.lang.reflect.Fiel ...
- python第一个程序:计算体脂率
主要是为了提醒自己要——保重 height = input('请输入身高(m):') weight = input('请输入体重(KG):') age = input('请输入年龄:') sex = ...
- 在Linux上安装ipmitool
https://blog.csdn.net/bnanoou/article/details/43985839
- leetcode-easy-dynamic-198 House Robber-NO
mycode 思路: a:1 2 3 4 5 6 7 8 9 f(9) =max( f(7) + a9 ,f(8)) 前一步.前两步 至于前三步 f(9) = f(6)+ a9,但其实f(7)在求值的 ...
- Linux高级调试与优化——用户态堆
内存问题是软件世界的住房问题 嵌入式Linux系统中,物理内存资源通常比较紧张,而不同的进程可能不停地分配和释放不同大小的内存,因此需要一套高效的内存管理机制. 内存管理可以分为三个层次,自底向上分别 ...