POJ3585 Accumulation Degree【换根dp】
题意
给出一棵树,树上的边都有容量,在树上任意选一个点作为根,使得往外流(到叶节点,叶节点可以接受无限多的流量)的流量最大。
分析
首先,还是从1号点工具人开始$dfs$,可以求出$dp[i]$为点$i$向它的子树中可以获得的最大流量。
接下来考虑换根,设$f[i]$是以$i$为根节点的答案(向它的所有根节点能够发射的最大流量之和)

考虑把根从$u$换到$v$,$v$自己子树内的答案$dp[v]$肯定是在$f[v]$之内的
经过了$u-v$这条边的答案就是$min(f[u]-min(w,dp[v]),w)$
加起来就是$f[v]=dp[v]+min(f[u]-min(w,dp[v]),w)$
理解一下:$f[u]-min(w,dp[v])$是减去红圈里的贡献,也就是$u$不往$v$里面流也产生的答案。要取$min(w,dp[v])$是因为$u$真正能流进$v$子树里的流量还要受到$w$的限制

相同地,把$v$当做根之后往$u$方向流的流量也会受到$w$的限制,所以也要取$min$。
另外,特别地,还有这种情况:

(这种情况真的好难想到的说)
这种情况的话,答案就直接是$f[v]=dp[v]+w$
然而用上面的式子的话,$f[u]-min(w,dp[v])=0$,变成$f[v]=dp[v]$,是不成立的。所以需要特判一下。
然后就做
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstring>
using namespace std;
#define N 200005
#define ll long long
#define INF 0x3f3f3f3f
int n,ans;
int dp[N],f[N];
vector<pair<int,int> >G[N];
int rd()
{
int f=,x=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=(x<<)+(x<<)+(c^);c=getchar();}
return f*x;
}
void dfs(int u,int p)
{
int tmp=;
for(int i=;i<G[u].size();i++)
{
int v=G[u][i].first,w=G[u][i].second;
if(v==p) continue;
dfs(v,u);
tmp+=min(dp[v],w);
}
if(tmp) dp[u]=tmp;
return ;
}
void dfs2(int u,int p)
{
ans=max(ans,f[u]);
for(int i=;i<G[u].size();i++)
{
int v=G[u][i].first,w=G[u][i].second;
if(v==p) continue;
if(G[u].size()==)
{
f[v]=dp[v]+w;
dfs2(v,u);
}
else
{
f[v]=dp[v]+min(w,f[u]-min(w,dp[v]));
dfs2(v,u);
}
}
}
int main()
{
int T=rd();
while(T--)
{
n=rd();
if(n==)
{//特判
puts("");
continue;
}
ans=;
memset(dp,INF,sizeof(dp));
for(int i=;i<=n;i++)
G[i].clear();
for(int i=;i<n;i++)
{
int u=rd(),v=rd(),w=rd();
G[u].push_back(make_pair(v,w));
G[v].push_back(make_pair(u,w));
}
dfs(,-);
for(int i=;i<=n;i++)
if(dp[i]==INF)
dp[i]=;//叶节点
f[]=dp[];
dfs2(,-);
printf("%d\n",ans);
}
}
Code
完啦。
POJ3585 Accumulation Degree【换根dp】的更多相关文章
- poj3585 Accumulation Degree(换根dp)
传送门 换根dp板子题(板子型选手 题意: 一棵树确定源点和汇点找到最大的流量(拿出一整套最大瘤板子orz ; int head[maxn],tot; struct node { int nt,to; ...
- POJ3585:Accumulation Degree(换根树形dp)
Accumulation Degree Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3425 Accepted: 85 ...
- 题解 poj3585 Accumulation Degree (树形dp)(二次扫描和换根法)
写一篇题解,以纪念调了一个小时的经历(就是因为边的数组没有乘2 phhhh QAQ) 题目 题目大意:找一个点使得从这个点出发作为源点,流出的流量最大,输出这个最大的流量. 以这道题来介绍二次扫描和换 ...
- poj3585 Accumulation Degree【树形DP】【最大流】
Accumulation Degree Time Limit: 5000MS Memory Limit: 65536K Total Submissions:3151 Accepted: 783 ...
- POJ3585 Accumulation Degree 【树形dp】
题目链接 POJ3585 题解 -二次扫描与换根法- 对于这样一个无根树的树形dp 我们先任选一根进行一次树形dp 然后再扫一遍通过计算得出每个点为根时的答案 #include<iostream ...
- POJ 3585 Accumulation Degree【换根DP】
传送门:http://poj.org/problem?id=3585 题意:给定一张无根图,给定每条边的容量,随便取一点使得从这个点出发作为源点,发出的流量最大,并且输出这个最大的流量. 思路:最近开 ...
- [算法学习] 换根dp
换根dp 一般来说,我们做题的树都是默认 \(1\) 为根的.但是有些题目需要计算以每个节点为根时的内容. 朴素的暴力:以每个点 \(u\) 作为 \(root\) 暴力dfs下去,复杂度\(O(n^ ...
- [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]
题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...
- 2018.10.15 NOIP训练 水流成河(换根dp)
传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
随机推荐
- 用DevExpress.textEdit控件限定数据录入格式
例:只允许输入4位数字 第一步 第二部 例:只允许IP格式 设置Mask属性项的EditMask属性值为:(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5 ...
- HttpServlet容器响应Web客户请求流程?
1)Web客户向Servlet容器发出Http请求: 2)Servlet容器解析Web客户的Http请求: 3)Servlet容器创建一个HttpRequest对象,在这个对象中封装Http请求信息: ...
- 交叉熵和softmax
深度学习分类问题结尾就是softmax,损失函数是交叉熵,本质就是极大似然...
- 手动升级 Confluence 6 - 升级以后
7. 重新安装服务(仅针对 Windows) 如果你的 Confluence 安装实例在 Windows 中是以服务来运行的话,你需要删除已经存在的 Windows 服务,然后重新安装 Windows ...
- [CF1204E]Natasha,Sasha and the Prefix Sums 题解
前言 本文中的排列指由n个1, m个-1构成的序列中的一种. 题目这么长不吐槽了,但是这确实是一道好题. 题解 DP题话不多说,直接状态/变量/转移. 状态 我们定义f表示"最大prefix ...
- Vue成员与指令介绍
一.Vue介绍 1.什么是vue 通过对框架的了解与运用程度,来决定其在整个项目中的应用范围, 可以独立完成前后端分离式web项目的渐进式JavaScript框架 2.为什么要学vue 三大主流框架之 ...
- SSM框架搭建,以及mybatis学习
前两天在研究SSM框架,然后看到一篇博文,写的很清晰,照着实现了一下,这里就不重复写了,把博文地址留一下 http://blog.csdn.net/zhshulin/article/details/3 ...
- Spring Boot教程(三十二)多数据源配置与使用(2)
Spring-data-jpa支持 对于数据源的配置可以沿用上例中DataSourceConfig的实现. 新增对第一数据源的JPA配置,注意两处注释的地方,用于指定数据源对应的Entity实体和Re ...
- STS热部署方法(springboot)
sts热部署,即是在项目中修改代码不用重新启动服务,提高效率. 方法如下: 1.在pom文件中引入 devtools 依赖: <dependency> <groupId> ...
- Scala学习(三)——集合
基本数据结构 Scala提供了一些不错的集合. 数组 Array 数组是有序的,可以包含重复项,并且可变. val numbers = Array(1, 2, 3, 4, 5, 1, 2, 3, 4, ...