UESTC 880 生日礼物 --单调队列优化DP
定义dp[i][j]表示第i天手中有j股股票时,获得的最多钱数。
转移方程有:
1.当天不买也不卖: dp[i][j]=dp[i-1][j];
2.当天买了j-k股: dp[i][j]=max(dp[r][k]+(j-k)*Ap[i]); (r<i-w)
3.当天卖了k-j股: dp[i][j]=max(dp[r][k]+(k-j)*Bp[i]); (r<i-w)
直接转移复杂度太高,为O(n^2*Maxp^2).
分别考虑每种转移,第一种不用管,考虑第二种。
dp[i][j]=max(dp[r][k]+(j-k)*Ap[i])
变换得:dp[i][j]-j*Ap[i]=dp[r][k]-k*Ap[i]。
所以变成使dp[r][k]-k*Ap[i]最大。
对于dp[r][k]-k*Ap[i], 因为我们已经有dp[i][k]=dp[i-1][k]的转移了,说明,dp[i][k]包含了所有dp[j][k] (j<i)的情况。 换句话说dp[i][k]是递增的。那么这里我们显然就可以直接把r换成i-w-1,于是变成了求 dp[i-w-1][k]-k*Ap[i]的最大值。
令f[k]=dp[i-w-1][k]-k*Ap[i]) 原式变为 dp[i][j]=max(f[k])+j*Ap[i] (0=<k<j),如果再把与i相关的东西变成常数,则变成类似dp[j] = max(f[k])+c[j]形式,即变成可用单调队列优化的形式。
维护一个单调递增队列来求f[k]。复杂度O(n*Maxp).
因为直接令r=i-w-1,因为r>=1,所以i>w+1时才能转移,这是i<=w+1的情况需要预处理。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define Mod 1000000007
using namespace std;
#define N 2007 struct node
{
int num,val;
}que[N]; int AP[N],BP[N],AS[N],BS[N];
int dp[N][N];
int n,Maxp,w; void init()
{
int i,j;
for(i=;i<=;i++)
for(j=;j<=Maxp;j++)
dp[i][j] = -Mod;
dp[][] = ;
for(i=;i<=w+;i++)
for(j=;j<=min(AS[i],Maxp);j++)
dp[i][j] = -j*AP[i];
} int main()
{
int i,j,k;
int t,head,tail;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&Maxp,&w);
for(i=;i<=n;i++)
scanf("%d%d%d%d",&AP[i],&BP[i],&AS[i],&BS[i]);
init();
for(i=;i<=n;i++)
{
//unbuy & unsell
for(j=;j<=Maxp;j++)
dp[i][j] = max(dp[i][j],dp[i-][j]);
if(i-w- <= )
continue;
//buy j-k stocks
head = ;
tail = ;
for(j=;j<=Maxp;j++)
{
int tmp = dp[i-w-][j] + j*AP[i];
while(tail >= head && j-que[head].num > AS[i])
head++;
if(head <= tail)
dp[i][j] = max(dp[i][j],que[head].val-(j-que[head].num)*AP[i]);
while(tail >= head && que[tail].val+que[tail].num*AP[i] < tmp)
tail--;
que[++tail].num = j;
que[tail].val = dp[i-w-][j];
}
//sell k-j stocks
head = ;
tail = ;
for(j=Maxp;j>=;j--)
{
int tmp = dp[i-w-][j] + j*BP[i];
while(tail >= head && que[head].num-j > BS[i])
head++;
if(head <= tail)
dp[i][j] = max(dp[i][j],que[head].val-(j-que[head].num)*BP[i]);
while(tail >= head && que[tail].val+que[tail].num*BP[i] < tmp)
tail--;
que[++tail].num = j;
que[tail].val = dp[i-w-][j];
}
}
int res = ;
for(i=;i<=Maxp;i++)
res = max(res,dp[n][i]);
printf("%d\n",res);
}
return ;
}
UESTC 880 生日礼物 --单调队列优化DP的更多相关文章
- 【单调队列优化dp】uestc 594 我要长高
http://acm.uestc.edu.cn/#/problem/show/594 [AC] #include<bits/stdc++.h> using namespace std; t ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
- Parade(单调队列优化dp)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others) ...
- BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP
BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...
- 【单调队列优化dp】 分组
[单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...
- [小明打联盟][斜率/单调队列 优化dp][背包]
链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...
- 单调队列以及单调队列优化DP
单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...
随机推荐
- php表单中如何获取单选按钮与复选按钮的值
php代码中获取表单中单选按钮的值:(单选按钮只能让我们选择一个,这里有一个"checked"属性,这是用来默认选取的,我们每次刷新我们的页面时就默认为这个值.) 例:<fo ...
- 【GOF23设计模式】模板方法模式
来源:http://www.bjsxt.com/ 一.[GOF23设计模式]_模板方法模式.钩子函数.方法回调.好莱坞原则 package com.test.templateMethod; publi ...
- [Angularjs]视图和路由(四)
写在前面 关于angularjs的路由的概念基本上这篇就要结束了,通过学习,以及在实际项目中的实践,还是比较容易上手的.自己也通过angularjs做了一个在app上的一个模块,效果还是可以的. 系列 ...
- [js开源组件开发]js文本框计数组件
js文本框计数组件 先上效果图: 样式可以自行调整 ,它的功能提供文本框的实时计数,并作出对应的操作,比如现在超出了,点击下面的按钮后,文本框会闪动两下,阻止提交.具体例子可以点击demo:http: ...
- JQuery EasyUI Tree
Tree 数据转换 所有节点都包含以下属性: id:节点id,这个很重要到加载远程服务器数据 which is important to load remote data text: 显示的节点文本 ...
- 解决Win10服务主机本地系统网络受限
换成win10有一段时间了,界面风格比win7好看,但有部分程序还是不兼容,还好用虚拟机可以将就解决.但有一个问题一直困扰了我好久,今天终于解决了. 问题描述 在进程中,服务主机:本地系统(网络受限) ...
- Android-ListView类
ListView组件在应用程序中可以说是不可或缺的一部分,ListView主要是显示列表数据,同时可以滚动查看,这篇博客主要是对ListView的基本用法进行说明,后面会依次对ListView点击动态 ...
- (方法调配)Method Swizzling
一.概念 方法调配:因为Objective-C是运行时语言,也就是说究竟会调用何种方法要在运行期才能解析出来.那么我们其实也可以在运行时改变选择子名称.这样我们既不需要查看到源代码,又没有必要去重写子 ...
- 【读书笔记】iOS-使用应用内支付注意事项
一,iOS端开发. 如果购买成功,我们需要将凭证发送到服务器上进行验证.考虑到网络异常情况,iOS端的发送凭证操作应该可以持久化,如果程序退出,崩溃或网络异常,可以恢复重试. 二,服务器端开发. 服务 ...
- 利用PPT的WebBroswer控件助力系统汇报演示
如何在PPT演示过程中无缝衔接演示系统成果?使用PPT自带的WebBroswer控件即可,相当于在PPT里嵌入了浏览器,在这个浏览器里打开系统进行操作演示. 环境:Windows 7 + Office ...