Leetcode: Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k. Example:
Given matrix = [
[1, 0, 1],
[0, -2, 3]
]
k = 2
The answer is 2. Because the sum of rectangle [[0, 1], [-2, 3]] is 2 and 2 is the max number no larger than k (k = 2). Note:
The rectangle inside the matrix must have an area > 0.
What if the number of rows is much larger than the number of columns?
Reference: https://discuss.leetcode.com/topic/48875/accepted-c-codes-with-explanation-and-references/2
The naive solution is brute-force, which is O((mn)^2). In order to be more efficient, I tried something similar to Kadane's algorithm. The only difference is that here we have upper bound restriction K.
First, How to find the max sum rectangle in 2D array? The naive way is O(N^4)
Here's the easily understanding video link for the problem "find the max sum rectangle in 2D array": Maximum Sum Rectangular Submatrix in Matrix dynamic programming/2D kadane , O(N^3), the idea is select left edge l and right edge r, together with top edge 0 and bottom edge n, form a subrectangle area, (O(N^2)), find the local max sum in this subrectangle, just like max sum subarray(O(N). So the total time complexity is O(N^3), space complexity is O(N).
Once you are clear how to solve the above problem, the next step is to find the max sum no more than K in an array. This can be done within O(nlogn), and you can refer to this article: max subarray sum no more than k.
You can do this in O(nlog(n))
First thing to note is that sum of subarray (i,j] is just the sum of the first j elements less the sum of the first i elements. Store these cumulative sums in the array cum. Then
the problem reduces to finding i,j such that i<j and cum[j]−cum[i] is as close to k but lower than it.
To solve this, scan from left to right. Put the cum[i] values that you have encountered till now into a set. When you are processing cum[j] what you need to retrieve from the set is the smallest number in the set such which is bigger than cum[j]−k. This lookup can be done in O(logn) using upper_bound. Hence the overall complexity is O(nlog(n)).
This can be done using TreeSet.
For the solution below, I assume that the number of rows is larger than the number of columns. Thus in general time complexity is
O[min(m,n)^2 * max(m,n) * log(max(m,n))], space O(max(m, n)).
假设col<row,下面的意思就是维护一个size为row的 sum数组。 每次iteration这个sum数组用来存某几个col叠加在一起的和(就是某一个rectangle的sum),然后在其中用treeSet找出当前最大的rectangle sum,时间复杂度是row*(log(row)). 所有iteration完成就得到最终答案,iteration数目是O(col^2), 所以总时间复杂度是O(col^2*row*log(row))。
例子:
1 2 3
4 5 6
7 8 9
假如现在i = 0, j=1, 那么当前subrectangle是[[1, 2], [4, 5], [7, 8]], 于是int[] sum就是[[1+2], [4+5], [7+8]] = [[3], [9], [15]], val是这个sum数组的preSum, 依次取的值是3, 3+9=12, 3+9+15=27, 所以TreeSet里面依次被加入0,3,12,27. 假设k=16,那么到27的时候,set里面是0,3,12,存在比27-16=11大的值是12,说明存在不大于k=16的最大subrectangle area = 27-12=15
Time Complexity: O[min(m,n)^2 * max(m,n) * log(max(m,n))], space O(max(m, n)). compare to naive solution time complexity O((mn)^2)
same as Leetcode: Number of Submatrices That Sum to Target
public class Solution {
public int maxSumSubmatrix(int[][] matrix, int k) {
if (matrix==null || matrix.length==0 || matrix[0].length==0) return Integer.MIN_VALUE;
int res = Integer.MIN_VALUE; int row = matrix.length;
int col = matrix[0].length;
int m = Math.min(row, col);
int n= Math.max(row, col);
boolean moreCol = col > row; for (int i=0; i<m; i++) {
int[] sum = new int[n];
for (int j=i; j<m; j++) {
TreeSet<Integer> set = new TreeSet<Integer>();
int val = 0; //sum array's preSum
set.add(0);
for (int l=0; l<n; l++) {
sum[l] += moreCol? matrix[j][l] : matrix[l][j];
val += sum[l];
Integer oneSum = set.ceiling(val-k);
if (oneSum != null) {
res = Math.max(res, val-oneSum);
}
set.add(val);
}
}
}
return res;
}
}
Leetcode: Max Sum of Rectangle No Larger Than K的更多相关文章
- [LeetCode] Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 363. Max Sum of Rectangle No Larger Than K
/* * 363. Max Sum of Rectangle No Larger Than K * 2016-7-15 by Mingyang */ public int maxSumSubmatri ...
- [LeetCode] 363. Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 【LeetCode】363. Max Sum of Rectangle No Larger Than K 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/max-sum- ...
- 【leetcode】363. Max Sum of Rectangle No Larger Than K
题目描述: Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the ma ...
- [Swift]LeetCode363. 矩形区域不超过 K 的最大数值和 | Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 363 Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- LeetCode 363:Max Sum of Rectangle No Larger Than K
题目链接 链接:https://leetcode.com/problems/max-sum-of-rectangle-no-larger-than-k/description/ 题解&代码 1 ...
随机推荐
- jquery()的三种$()
jQuery中的$以及选择器总结 $号是jQuery”类”的一个别称,$()构造了一个jQuery对象.所以,”$()”可以看作jQuery的”构造函数”(个人观点). 一.$符号 1.$()可以是$ ...
- centos 6.X 安装scrapy-原创
特别注意[坑]: python版本一定大于 2.7.5,scrapy python 必须2.7以上centos 6.X系列 系统默认安装的python是2.6.6 ,本人折腾了很久2.7.3 在这里升 ...
- Hashtable、Dictionary和List 谁效率更高
一 前言 很少接触HashTable晚上回来简单看了看,然后做一些增加和移除的操作,就想和List 与 Dictionary比较下存数据与取数据的差距,然后便有了如下的一此测试, 当然我测的方法可能不 ...
- 安装faac编译问题
mpeg4ip.h:126: error: new declaration ‘char* strcasestr(const char*, const char*)’分类: Linux开发相关 2012 ...
- cwe
- 大数据情况下linux的配置
一:配置的大纲 主要的配置有几个方面: 主机名 IP 网络映射 增加新用户 给新用户root的权限,方便实验 关闭防火墙 安全子系统需要关闭 二:主机名的配置 命令:vi /etc/sysconfig ...
- JSON格式解析和libjson使用简介(关于cjson的使用示例)
JSON格式解析和libjson使用简介 在阅读本文之前,请先阅读下<Rss Reader实例开发之系统设计>一文. Rss Reader实例开发中,进行网络数据交换时主要使用到了两种数据 ...
- Wordpress制作sidebar.php
调用 在主页以下方法可以调用模板中sidebar.php的内容 <?php get_sidebar(); ?> 判断是否自定义sidebar侧边栏: <?php if ( !func ...
- yum安装node.js
1.安装EPEL库 yum install epel-release 2.安装Node.js yum install nodejs 3.安装nodejs中常用的npm软件包管理器 yum instal ...
- JNI字段描述符(转)
转载自http://fgsink.blog.163.com/blog/static/16716997020124310169911/ “([Ljava/lang/String;)V” 它是一种对函数返 ...