Leetcode: Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k. Example:
Given matrix = [
[1, 0, 1],
[0, -2, 3]
]
k = 2
The answer is 2. Because the sum of rectangle [[0, 1], [-2, 3]] is 2 and 2 is the max number no larger than k (k = 2). Note:
The rectangle inside the matrix must have an area > 0.
What if the number of rows is much larger than the number of columns?
Reference: https://discuss.leetcode.com/topic/48875/accepted-c-codes-with-explanation-and-references/2
The naive solution is brute-force, which is O((mn)^2). In order to be more efficient, I tried something similar to Kadane's algorithm. The only difference is that here we have upper bound restriction K.
First, How to find the max sum rectangle in 2D array? The naive way is O(N^4)
Here's the easily understanding video link for the problem "find the max sum rectangle in 2D array": Maximum Sum Rectangular Submatrix in Matrix dynamic programming/2D kadane , O(N^3), the idea is select left edge l and right edge r, together with top edge 0 and bottom edge n, form a subrectangle area, (O(N^2)), find the local max sum in this subrectangle, just like max sum subarray(O(N). So the total time complexity is O(N^3), space complexity is O(N).
Once you are clear how to solve the above problem, the next step is to find the max sum no more than K in an array. This can be done within O(nlogn), and you can refer to this article: max subarray sum no more than k.
You can do this in O(nlog(n))
First thing to note is that sum of subarray (i,j] is just the sum of the first j elements less the sum of the first i elements. Store these cumulative sums in the array cum. Then
the problem reduces to finding i,j such that i<j and cum[j]−cum[i] is as close to k but lower than it.
To solve this, scan from left to right. Put the cum[i] values that you have encountered till now into a set. When you are processing cum[j] what you need to retrieve from the set is the smallest number in the set such which is bigger than cum[j]−k. This lookup can be done in O(logn) using upper_bound. Hence the overall complexity is O(nlog(n)).
This can be done using TreeSet.
For the solution below, I assume that the number of rows is larger than the number of columns. Thus in general time complexity is
O[min(m,n)^2 * max(m,n) * log(max(m,n))], space O(max(m, n)).
假设col<row,下面的意思就是维护一个size为row的 sum数组。 每次iteration这个sum数组用来存某几个col叠加在一起的和(就是某一个rectangle的sum),然后在其中用treeSet找出当前最大的rectangle sum,时间复杂度是row*(log(row)). 所有iteration完成就得到最终答案,iteration数目是O(col^2), 所以总时间复杂度是O(col^2*row*log(row))。
例子:
1 2 3
4 5 6
7 8 9
假如现在i = 0, j=1, 那么当前subrectangle是[[1, 2], [4, 5], [7, 8]], 于是int[] sum就是[[1+2], [4+5], [7+8]] = [[3], [9], [15]], val是这个sum数组的preSum, 依次取的值是3, 3+9=12, 3+9+15=27, 所以TreeSet里面依次被加入0,3,12,27. 假设k=16,那么到27的时候,set里面是0,3,12,存在比27-16=11大的值是12,说明存在不大于k=16的最大subrectangle area = 27-12=15
Time Complexity: O[min(m,n)^2 * max(m,n) * log(max(m,n))], space O(max(m, n)). compare to naive solution time complexity O((mn)^2)
same as Leetcode: Number of Submatrices That Sum to Target
public class Solution {
public int maxSumSubmatrix(int[][] matrix, int k) {
if (matrix==null || matrix.length==0 || matrix[0].length==0) return Integer.MIN_VALUE;
int res = Integer.MIN_VALUE;
int row = matrix.length;
int col = matrix[0].length;
int m = Math.min(row, col);
int n= Math.max(row, col);
boolean moreCol = col > row;
for (int i=0; i<m; i++) {
int[] sum = new int[n];
for (int j=i; j<m; j++) {
TreeSet<Integer> set = new TreeSet<Integer>();
int val = 0; //sum array's preSum
set.add(0);
for (int l=0; l<n; l++) {
sum[l] += moreCol? matrix[j][l] : matrix[l][j];
val += sum[l];
Integer oneSum = set.ceiling(val-k);
if (oneSum != null) {
res = Math.max(res, val-oneSum);
}
set.add(val);
}
}
}
return res;
}
}
Leetcode: Max Sum of Rectangle No Larger Than K的更多相关文章
- [LeetCode] Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 363. Max Sum of Rectangle No Larger Than K
/* * 363. Max Sum of Rectangle No Larger Than K * 2016-7-15 by Mingyang */ public int maxSumSubmatri ...
- [LeetCode] 363. Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 【LeetCode】363. Max Sum of Rectangle No Larger Than K 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/max-sum- ...
- 【leetcode】363. Max Sum of Rectangle No Larger Than K
题目描述: Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the ma ...
- [Swift]LeetCode363. 矩形区域不超过 K 的最大数值和 | Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 363 Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- LeetCode 363:Max Sum of Rectangle No Larger Than K
题目链接 链接:https://leetcode.com/problems/max-sum-of-rectangle-no-larger-than-k/description/ 题解&代码 1 ...
随机推荐
- Java IO包装流如何关闭?
问题: (1)JAVA的IO流使用了装饰模式,关闭最外面的流的时候会自动调用被包装的流的close()方吗? (2)如果按顺序关闭流,是从内层流到外层流关闭还是从外层到内存关闭? 问题(1)解释: ...
- 转:java.sql.SQLException: [Microsoft][ODBC 驱动程序管理器] 未发现数据源名称并且未指定默认驱动程序
在Win7 64位系统下,使用Java+Access数据库编程,用Java连数据库时,出现错误提示,如下: Java java.sql.SQLException: [Microsoft][ODBC 驱 ...
- Android Gradle 编译错误Java finished with non-zero exit value 2
出现这个错误主要有两类错误 依赖包重复 方法数超过65K 针对第一种错误,可能是由于build.gradle里写了 compile fileTree(dir: 'libs', include: ['* ...
- 函数式编程Map()&Reduce()
.forEach():每个元素都调用指定函数,可传三个参数:数组元素丶元素索引丶数组本身丶 , , , , , , , ]; a.forEach(function(v,i,a){a[i]=v+;}); ...
- error: jump to label ‘XXXX’ [-fpermissive]
http://www.cnblogs.com/foohack/p/4090124.html 下面的类似的源码在MSVC上能正确编译通过.但是gcc/g++上就会错: 1. if(expr)2. got ...
- FW nexus docker
原文地址: http://www.cnblogs.com/wzy5223/p/5410990.html Nexus 3.0 可以创建三种docker仓库: 1. docker (proxy) ...
- uiwebview的基本使用
http://blog.csdn.net/daiyelang/article/details/40989389
- 转:php 获取时间今天明天昨天时间戳
<?php echo "今天:".date("Y-m-d")."<br>"; echo "昨天:".d ...
- pushViewController addSubview presentModalViewController视图切换
1.pushViewController和popViewController来进行视图切换,首先要确保根视图是NavigationController,不然是不可以用的, pushViewContro ...
- cell的imageVIew的fram问题
今天你在输出cell的imageVIew的fram时,发现新建的cell的imageVIew的frame是(0,0,0,0),但是重用的cell的imageVIew的frame输出是(15,19,30 ...